Volume and Area Formulas

Conversion Between Radians and Deqrees $\quad 2 \pi$ radians $=360$ degrees $\quad \frac{2 \pi}{360}=\frac{x \mathrm{rad}}{y \mathrm{deg}}$

Population Density Population density $=\frac{\text { number of people }}{\text { area of land }}$

Area of a Regular Polygon $\quad \boldsymbol{A}=1 / 2 \boldsymbol{p} \boldsymbol{a} \quad \mathrm{p}=$ perimeter $\mathrm{a}=$ apothem
Area of a Rhombus or Kite $\quad \boldsymbol{A}=\mathbb{1} / 2 \boldsymbol{d}_{1} \boldsymbol{d}_{\mathbf{2}} \quad \mathrm{d}_{1}=$ diagonal $1 \quad \mathrm{~d}_{2}=$ diagonal 2

RISM		
Lateral Area of a Right Prism LA = p•h where $p=$ perimeter of base and $h=$ height *or you can find the area of each lateral face then add them up		Volume of a Right Prism V=B.h
Total Area of a Right Prism where $B=$ AREA of one base	$T A=L A+2 B$	

| CYLINDER | |
| :--- | :--- | :--- |
| Lateral Area of a Right Circular Cylinder $\quad L A=\mathbf{2 \pi r h}$ | Volume of a Cylinder $\quad \boldsymbol{V}=\boldsymbol{\pi r} \boldsymbol{r}^{2} \boldsymbol{h}$ |
| Total Area of a Right Circular Cylinder $\quad \boldsymbol{T A}=\mathbf{L A}+\mathbf{2 B}$
 where $B=\pi r^{2}$ the area of 1 base | |

PYRAMID	Volume of a Pyramid $\quad V=\frac{1}{3} B h$
Lateral Area of a REGULAR Pyramid $\quad L A=1 / 2 \cdot p \cdot l$	
*or find one lateral face and multiply by the total number	
of lateral faces	where $B=$ area of the base and $\mathrm{h}=$ height of pyramid
Total Surface Area $=L A+B$ where $B=$ area of the base	

CONE Lateral Area of a Cone $=\pi \cdot r \cdot l$ where l is the slant height	Volume of a Cone $\boldsymbol{V}=\frac{1}{3} \pi r^{2} h$

SPHERE	
Total Area of a Sphere $\boldsymbol{T} . \mathbf{A} .=\mathbf{4} \cdot \boldsymbol{\pi} \cdot \boldsymbol{r}^{2}$	Volume of a Sphere $\quad \boldsymbol{V}=\frac{4}{3} \pi r^{3}$

