Honors Geometry Chapter 4 Memorization Sheet

*To reflect around the y-axis Then $\left(x_{1}, y_{1}\right) \rightarrow\left(-x_{1}, y_{1}\right)^{\prime}$ and $\left(x_{2}, y_{2}\right) \rightarrow\left(-x_{2}, y_{2}\right)^{\prime}$
*Take the opposite of the x
*To reflect around the x -axis Then $\quad\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \rightarrow\left(\mathrm{x}_{1},-\mathrm{y}_{1}\right)^{\prime}$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \rightarrow\left(\mathrm{x}_{2},-\mathrm{y}_{2}\right)^{\prime}$
*Take the opposite of the y
*To reflect about the line $\mathrm{y}=\mathrm{x}$ Then $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \rightarrow\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right)^{\prime} \quad$ *Just switch the (x, y) points
*To reflect about the line $\mathrm{y}=-\mathrm{x}$ Then $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \rightarrow\left(-\mathrm{y}_{1},-\mathrm{x}_{1}\right)^{\prime}$
*Just switch the (x, y) points \& take opposite
If you are reflecting about any other line or point, then graph it. Refer to in-class examples.

C. Core Concept

Coordinate Rules for Rotations about the Origin

When a point (a, b) is rotated counterclockwise about the origin, the following are true.

- For a rotation of 90°,
$(a, b) \rightarrow(-b, a)$.
- For a rotation of 180°, $(a, b) \rightarrow(-a,-b)$.
- For a rotation of 270°, $(a, b) \rightarrow(b,-a)$.

H is a letter we use for "half-turn"
So $\mathrm{H}_{\mathrm{o}}=\boldsymbol{R}_{0,180} \quad$ Also $\mathrm{H}_{\mathrm{o}}:(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{x},-\mathrm{y})$
If you are rotating about any other point, then make this point your "hypothetical" origin and find the distances to that point to apply the above formulas. Refer to in-class examples.

Dilations in the Coordinate Plane

If $P(x, y)$ is the preimage of a point under a dilation centered at the origin with scale factor k, then the image of the point is $P^{\prime}(k x, k y)$.

$$
(x, y) \rightarrow(k x, k y)
$$

If you are dilating about any point other than the origin, then use the distances to that "point" with the scale factor. Refer to in-class examples.

