Honors Geometry Chapter 7 Review

- Study definitions \& theorems for always, sometimes, \& never true questions.
a) A parallelogram \qquad has congruent consecutive sides.
b) The diagonals of a parallelogram are \qquad congruent.
c) Both pairs of opposite angles of a trapezoid are \qquad congruent.
d) A parallelogram with four right angles is \qquad a square.
- Know how to identify if the quadrilateral is rectangle, rhombus, square, etc.

Proofs: Know how to prove something is a parallelogram.
Given: $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4, \mathrm{HK}=\mathrm{FJ}$ Prove: KEJG is a parallelogram

Sample Problems:

1. $\triangle \mathrm{WYZ} \cong$ \qquad
2. $\angle \mathrm{ZWX} \cong$ \qquad

3. If $\mathrm{m} \angle \mathrm{WXY}=13 \mathrm{x}-7$ and $\mathrm{m} \angle \mathrm{YZW}=9 \mathrm{x}+29$, then $\mathrm{m} \angle \mathrm{WXY}=$ \qquad (numerical answer)
4. If $\mathrm{m} \angle 1=$ \qquad , $\mathrm{m} \angle 2=64$, and $\mathrm{m} \angle 3=38$, then (a) $\mathrm{WY}=$ \qquad and (b) $\mathrm{m} \angle 5=$ \qquad
5. If $\mathrm{WV}=4 \mathrm{y}+2, \mathrm{YV}=6 \mathrm{y}$, and $\mathrm{ZV}=3 \mathrm{y}$, then (a) $\mathrm{WY}=$ \qquad and (b) $X Z=$ \qquad
6. If $\mathrm{XY}=15 \mathrm{t}-3, \mathrm{YZ}=10 \mathrm{t}+2$, and $\mathrm{WZ}=9 \mathrm{t}+21$, then $\mathrm{t}=$ \qquad
7. $J K$ is the ___ of the trapezoid.
8. If $\mathrm{EH}=\mathrm{FG}$ and $\mathrm{m} \angle \mathrm{E}=65$, then (a) $\mathrm{m} \angle \mathrm{G}=$ \qquad (b) $\mathrm{m} \angle \mathrm{GKJ}=$ \qquad
9. If $\mathrm{EF}=36, \mathrm{JK}=4 \mathrm{x}$, and $\mathrm{GH}=2 \mathrm{x}+6$, then $\mathrm{x}=$ \qquad

10. In kite $U V W X, \mathrm{~m} \angle X U V=84^{\circ}$, and $\mathrm{m} \angle W V X=68^{\circ}$. What is $\mathrm{m} \angle V W X$?

11. Which is the best name for the quadrilateral with vertices at $(2,2),(5,-2),(1,-5)$, and $(-2,-1)$?
12. An interior angle of a regular convex polygon measures 120°. How many sides does the polygon have?
13. If an exterior angle of a polygon measures 40 degrees, what is the measure of the interior angle adjacent to it?

Answers:
a) sometimes
b) sometimes
c) never
d) sometimes

1. $\Delta \mathrm{YWX}$
2. $\angle \mathrm{XYZ}$
3. 110
4. a. 30 b. 64
5. a. 12 b. 6
6. 4
7. median
8. a. 115 b. 65
9. 7
10. 44^{0}
11. square
12. 6
13. 140
*There is more than 1 way to prove this
Proof:
1) ----
2) HEFG is a parallelogram
3) $\overline{H G} \cong \overline{E F}$
4) $\overline{H G} \| \overline{E F}$
5) $\mathrm{GH}+\mathrm{HK}=\mathrm{GK}$
$\mathrm{EF}+\mathrm{FJ}=\mathrm{EJ}$
6) $\mathrm{GK}=\mathrm{EJ}$
7) KEJG is a parallelogram
8) Given
9) opposite angles of a parallelogram congruent
10) opp side so of a parallelogram congruent
11) defn of parallelogram
12) segment addition
13) Transitive
14) 1 pair of opp sides $\|$ and congruent

Additional Practice:

Tell whether each figure is a polygon. If it is a polygon, name it by the number of its sides.
1.

2.

3.

Tell whether each polygon is regular or irregular. Tell whether it is concave or convex.
4.

5.

7. Find the measure of each interior angle of
6.
 pentagon $A B C D E$
8. Find the sum of the interior angle
 measures of a convex heptagon.
9. Find the measure of each interior angle of a regular 15 -gon.
10. Find the value of x in polygon FGHJKL.
11. Find the measure of each exterior angle of a regular dodecagon.

$M N O P$ is a parallelogram. Find each measure.
12. $M P$
13. $\mathrm{m} \angle M$
14. $\mathrm{m} \angle N$

Three vertices of $\square Q R S T$ are given. Find the coordinates of T.
15. $Q(-5,3), R(3,6), S(6,4)$
16. $Q(-1,7), R(3,3), S(-2,3)$

17. Given: $A B F G$ and $H D E G$ are parallelograms. Prove: $\angle B \cong \angle D$
18. Show that $R S T U$ is a parallelogram for $x=2$ and $y=3$.
19. Show that $W X Y Z$ is a parallelogram for $a=6$ and $b=11$.

Determine if each quadrilateral must be a parallelogram. Justify your answer.
20.

21.

22.

Show that the quadrilateral with the given vertices is a parallelogram.
23. $W(0,0), X(-3,3), Y(5,5), Z(8,2)$
24. $A(-3,1), B(-2,4), C(1,2), D(0,-1)$
$E F G H$ is a rectangle. Find each measure.
25. $E H$
26. $H F$
$J K L M$ is a rhombus. Find each measure.

27. $J K$
28. $\mathrm{m} \angle N K L$

Show that the diagonals of a square with the given vertices are

congruent perpendicular bisectors of each other.
29. $N(1,4), P(4,1), Q(1,-2), R(-2,1)$
30. $S(-2,7), T(2,8), U(3,4), V(-1,3)$
31. Given: $W X Y Z$ is a rectangle. $\overline{X B} \cong \overline{A Z}$ Prove: $\overline{W B} \cong \overline{Y A}$

Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid.
32. Given: $\overline{X Y} \| \overline{W Z}, \overline{X Y} \cong \overline{W Z}, \overline{X Z} \perp \overline{W Y}$ Conclusion: $W X Y Z$ is a rhombus.
33. Given: $\overline{W X} \cong \overline{X Y}$ Conclusion: $W X Y Z$ is a square
34. Given: $\overline{W X} \perp \overline{X Y}, \overline{W X} \perp \overline{W Z}$ Conclusion: $W X Y Z$ is a rectangle.

Use the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply.

Answers:

1. hexagon 2. Not a polygon 3. Dodecagon 4. Irregular, concave 5. Irregular, concave
2. regular, convex $\quad 7 . m \angle A=159, m \angle B=73, m \angle C=111, m \angle D=91, m \angle E=106 \quad 8.900$
$9.156 \quad 10.15 \quad 11.30 \quad 12.26 \quad 13.7714 .10315,(-2,1)$
3. $(-6,7)$
4. ABFG and HDEG are parallelograms, Given
$\angle \mathrm{B} \cong \angle \mathrm{G}$ and $\angle \mathrm{G} \cong \angle \mathrm{D}$, opp angles of parallelogram congruent
$\angle \mathrm{B} \cong \angle \mathrm{D}$, transitive
5. $\mathrm{RS}=\mathrm{UT}=27$, so RS is congruent to UT . $\mathrm{UR}=\mathrm{TS}=11$ so UR is congruent to TS. Since both pairs of opp sides are congruent, RSTU is a parallelogram
6. $m \angle \mathrm{~W}=\mathrm{m} \angle \mathrm{Y}=86$ and $\mathrm{m} \angle \mathrm{X}=94$.

Since $1 \angle$ is supple to both of it consecutive angles, WXYZ is a parallelogram
20. No 21. Yes, 1 pair of opp sides congruent and parallel 22. Yes, both opp angles congruent
23. Slope of $\mathrm{WX}=1 \mathrm{YZ}=-1$, Slope of $\mathrm{WZ}=\mathrm{XY}=1 / 4$. So both pairs of opp sides have same slope
24. Slopes of AB and $\mathrm{CD}=3, \mathrm{AB}=\mathrm{CD}=\sqrt{10}$ thus 1 pair both parallel and congruent
25. 122
26. 155
27. 19
28.35
29. $\mathrm{NQ}=\mathrm{PR}=6$, Slopes of NQ and PR are perpendicular, NQ and PR midpoint at $(1,1)$ so NQ and PR bisect each other. Diag are perpendicular bisectors.
30. $\mathrm{SU}=\mathrm{TV}=\sqrt{ } 34$, slopes are opp reciprocal so perpendicular. Midpoints at $(1 / 2,5.5)$ so diag are congruent and perpendicular bisectors of each other.
31. WXYZ is a rect, XB congruent to YZ , given

WX congruent YZ , opp sides congruent
$\angle X$ and $\angle \mathrm{Z}$ are rt , defn of rect.
Triangle WXB congruet to triangle YZA, SAS
Segment WB congruent to segment YA, CPCTC
33. Not valid 34. Not valid
35. square, rect, rhombus
36. Rectangle
37. 25
38. 58
39. 25
40. 55
41. 8.5
42. ± 3
43. 2.5
44.9
45.22 cm

