AP Calc AB Ch 2 Review 2

*p. 107 know how to work with "e" the natural base
*know how to find:

- limits
- slopes of tangents
*know the squeeze theorem p. 85 \#35, 36
*p. 95 \#3-4
*find the average rate of change over a time interval (like quiz)
*write the equation of a TANGENT and a NORMAL to a curve at an x-value
*know IVT similar to p. 107 47-52, p. 109 27-28, know how to use calc to find zeros
*know how to graph with greatest integer, p. 109 \#30, p. 86 49-51
*be able to find a point of discontinuity
*be able to look at a graph and determine if continuous and where it is continuous
*be able to find ave velocity and instantaneous velocity
*\#1 on first review...be able to look at graphs and determine limits
*p. 107 \#41, study the one we did in notes for section 2.5
Sample Problems
Calc OK

1. If $1-\mathrm{x}^{4} \leq \mathrm{f}(\mathrm{x}) \leq 1+2 \mathrm{x}^{2}$, find the $\lim _{x \rightarrow 0} f(x)$
2. Find the average rate of change of $f(x)=1-x^{4}$ over $[-1,4]$.
3. Write the equation of the tangent to $f(x)=2 x^{2}-3$ at $x=1$. What is the equation of the normal to this?
4. Use IVT to show that $x^{5}-6 x^{2}+2 x+1$ has at least 1 solution. Next, find all real solutions.
5. $\operatorname{Graph} \mathrm{f}(\mathrm{x})=\llbracket x \rrbracket+2$ on $-5 \leq \mathrm{x} \leq 5$

NO Calc

1. Let $f(x)=3 x^{2}-5 x$ and P the point $(2,2)$. Find the slope, the equation of tangent and equation of normal to $f(x)$ at P.
2. $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}a-x^{2} \quad x \leq 1 \\ 2 x\end{array}\right.$
a) find $\lim _{x \rightarrow 1-} f(x)$
b) find $\lim _{x \rightarrow 1+} f(x)$ c) Find all values of a that make f continuous at 1 .
3.

Below is the graph of $f(x)$
4.

Below is the graph of $g(x)$

$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x \rightarrow \infty} f(x)=$
$\lim _{x \rightarrow-\infty} g(x)=$ $\lim _{x \rightarrow \infty} g(x)=$
$\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x)=\quad \lim _{x \rightarrow-2} f(x)=\quad \lim _{x \rightarrow-7^{-}} g(x)=\quad \lim _{x \rightarrow-7^{+}} g(x)=\lim _{x \rightarrow-7} g(x)=$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=\quad \lim _{x \rightarrow 0} f(x)=\quad \lim _{x \rightarrow-1^{-}} g(x)=\quad \lim _{x \rightarrow-1^{+}} g(x)=\lim _{x \rightarrow-1} g(x)=$
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=\quad \lim _{x \rightarrow 3} f(x)=\quad \lim _{x \rightarrow 3^{-}} g(x)=\quad \lim _{x \rightarrow 3^{+}} g(x)=\lim _{x \rightarrow 3} g(x)=$
On what intervals is $f(x)$ is continuous? On what intervals is $g(x)$ is continuous?

5. Use the graphs above to find:

a) find $\lim _{x \rightarrow 2}[f(x) \cdot g(x)]$
b) find $\lim _{x \rightarrow 2} \frac{g(x)}{f(x)}$
c) find $\lim _{x \rightarrow-7} x+g(x)$
6. The table below shows several measurements of the velocity of motorcycle driving on a straight road. $v(t)$ is continuous on the interval $[3,17]$.

t (min)	3	5	7	11	13	17
$v(t)$ (meters/min)	221.7	321.4	457.8	563.9	421.5	297.2

What is the least number of times where $v(t)$ is exactly 325 meters/min? Justify your answer.

