AP Calc AB Ch 2 Review 3

Sample Problems

Calc OK

1. If $1-x^{3} \leq f(x) \leq 1-2 x^{2}$, find the $\lim _{x \rightarrow 2} f(x)$
2. Find the average rate of change of $f(x)=2 x-x^{3}$ over $[0,3]$.
3. Write the equation of the tangent to $f(x)=-2 x^{2}+4$ at $x=1$. What is the equation of the normal to this?
4. Use IVT to show that $x^{3}-5 x+1$ has at least 1 solution. Next, find all real solutions.
5. Graph $\mathrm{f}(\mathrm{x})=\llbracket x \rrbracket+1$ on $-5 \leq \mathrm{x} \leq 5$

NO Calc

1. Let $f(x)=5 x^{2}-2 x$ and P the point (1,3). Find the slope, the equation of tangent and equation of normal to $f(x)$ at P.
2. $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}a-x^{3} \quad x \leq 2 \\ 3 x \quad x>2\end{array}\right.$
a) find $\lim _{x \rightarrow 2-} f(x) \quad$ b) find $\lim _{x \rightarrow 2+} f(x)$ c) Find all values of a that make f continuous at 2.
3. Below is the graph of $f(x)$

4. Below is the graph of $g(x)$

On what intervals is $f(x)$ continuous? On what intervals is $g(x)$ continuous?
5. Use the graphs above to find (estimate each):
a) find $\lim _{x \rightarrow 1}[f(x) \cdot g(x)]$
b) find $\lim _{x \rightarrow-1} \frac{g(x)}{f(x)}$
c) find $\lim _{x \rightarrow 4} x+g(x)$
6. The table below shows several measurements of the velocity of a car driving on a straight road. $v(t)$ is continuous on the interval $[2,20]$

t (min)	2	5	8	13	17	20
$v(t)$ (meters/min)	241.3	313.8	465.9	572.1	411.7	287.6

What is the least number of times where $v(t)$ is exactly 350 meters/min? Justify your answer.
7. The function f is continuous for $-3 \leq x \leq 2$. If $f(-3)=2$ and $f^{-1}(6)=2$, which of the following statements must be true?
a) There exists a c, where $-3 \leq c \leq 2$, such that $f(c)=1$
b) There exists a c, where $-3 \leq c \leq 2$, such that $f(c)=3$
c) There exists a c, where $-3 \leq c \leq 2$, such that $f(c)=-1$
d) The function f has at least one zero on the closed interval $-3 \leq x \leq 2$
e) $\lim _{x \rightarrow 2} f(x)$ exists
8. The function g is continuous on the closed interval $[-2,3]$. Some values of g are shown in the table.

x	-2	0	1	3
$g(x)$	-5	-8	k	-4

The equation $g(x)=1$ must have at least two solutions on the interval $[-2,3]$, if $k=$
a) -4
b) -2
c) 0
d) 1
e) 2

