Sample Problems Calc OK 1. If $1-x^3 \le f(x) \le 1 - 2x^2$, find the $\lim_{x \to 2} f(x)$

2. Find the average rate of change of $f(x) = 2x - x^3$ over [0, 3].

3. Write the equation of the tangent to $f(x) = -2x^2 + 4$ at x = 1. What is the equation of the normal to this?

4. Use IVT to show that $x^3 - 5x + 1$ has at least 1 solution. Next, find all real solutions.

5. Graph f(x) = [x] + 1 on $-5 \le x \le 5$

NO Calc

1. Let $f(x) = 5x^2 - 2x$ and P the point (1, 3). Find the slope, the equation of tangent and equation of normal to f(x) at P.

2. $f(x) = \begin{cases} a - x^3 & x \le 2 \\ 3x & x > 2 \end{cases}$ a) find $\lim_{x \to 2^-} f(x)$ b) find $\lim_{x \to 2^+} f(x)$ c) Find all values of a that make f continuous at 2.

3. Below is the graph of f(x)

4. Below is the graph of g(x)

On what intervals is f(x) continuous? On what intervals is g(x) continuous?

5. Use the graphs above to find (estimate each):

a) find $\lim_{x \to 1} [f(x) \cdot g(x)]$	b) find $\lim_{x \to -1} \frac{g(x)}{f(x)}$	c) find $\lim_{x \to 4} x + g(x)$
---	---	-----------------------------------

6. The table below shows several measurements of the velocity of a car driving on a straight road. v(t) is continuous on the interval [2, 20]

t (min)	2	5	8	13	17	20
v(t) (meters/min)	241.3	313.8	465.9	572.1	411.7	287.6

What is the least number of times where v(t) is exactly 350 meters/min? Justify your answer.

7. The function f is continuous for $-3 \le x \le 2$. If f(-3) = 2 and $f^{-1}(6) = 2$, which of the following statements must be true?

a) There exists a c, where $-3 \le c \le 2$, such that f(c) = 1

b) There exists a c, where $-3 \le c \le 2$, such that f(c) = 3

c) There exists a c, where $-3 \le c \le 2$, such that f(c) = -1

d) The function f has at least one zero on the closed interval $-3 \le x \le 2$

e) $\lim_{x \to 2} f(x)$ exists

8. The function g is continuous on the closed interval [-2, 3]. Some values of g are shown in the table.

X	-2	0	1	3
g(x)	-5	-8	k	-4

The equation g(x) = 1 must have **at least two solutions** on the interval [-2, 3], if k =

a) -4 b) -2 c) 0 d) 1 e) 2