State whether the function satisfies MVT on the given interval. If so, then find c that satisfies the conclusion for $f(x) = x^2 - 3x + 4$ on [-2, 5]

Find critical points, relative extrema, inflection points, intervals of increasing decreasing, intervals of concavity, x-intercepts & y-intercepts of each:

a)
$$f(x) = x^3(x-2)$$
 b) $f(x) = x(x-1)^2$

Use the graph of f to estimate the values of c that satisfy the conclusion of the mean value theorem on [-4, 4]

Find the limit of each:	a) $\lim_{x \to \infty} \frac{5x+2}{x-1}$	b) $\lim_{x \to \infty} \frac{5x^2 + 2}{x^5 - 2x + 3}$	c) $\lim_{x \to \infty} \frac{\sqrt{4x^2 - 2x + 1}}{2x + 3}$
-------------------------	---	--	--