State whether the function satisfies MVT on the given interval. If so, then find c that satisfies the conclusion for $f(x)=x^{2}-3 x+4$ on $[-2,5]$

Find critical points, relative extrema, inflection points, intervals of increasing decreasing, intervals of concavity, x-intercepts \& y-intercepts of each:
a) $f(x)=x^{3}(x-2)$
b) $f(x)=x(x-1)^{2}$

Use the graph of f to estimate the values of c that satisfy the conclusion of the mean value theorem on [-4, 4]

Find the limit of each:
a) $\lim _{x \rightarrow \infty} \frac{5 x+2}{x-1}$
b) $\lim _{x \rightarrow \infty} \frac{5 x^{2}+2}{x^{5}-2 x+3}$
c) $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-2 x+1}}{2 x+3}$

