AP Calculus Derivative Graphs Review/Extra Practice

1. Given the graph of $f^{\prime}(x)$:
a) State the intervals where $f(x)$ is increasing and decreasing.
b) State the x-coordinates of any local extrema of $f(x)$ and indicate if these are relative \max / min.

c) State the intervals of concavity of $f(x)$.
d) State the x-coordinates of any points of inflection of $f(x)$.
e) Sketch a possible graph of $f(x)$.

2. Use the graph of f shown to estimate the value(s) of c that satisfy the conclusion of the mean value theorem on $[-2,4]$.

3. The figure below shows the graph of f^{\prime}, the derivative of the function f, on the closed interval $-4 \leq x \leq 4$. The graph of f^{\prime} has horizontal tangents at $\mathbf{x}=-2,0,1 / 2$, and 2 . The function f is twice differentiable with $f(-1)=3$.

a) Find the x-coordinate of each local minimum/maximum of the graph of f. Justify your answer.
b) Find the x-coordinate of each of the points of inflection of the graph of f. Justify your answer.
c) Find all the intervals on which the graph of f is concave up and also has a negative slope.
d) For $-4 \leq x \leq 4$, sketch a possible graph of f on the axes.

