AP Calculus Chapter 4 Test 2 Review 2

1. Suppose you have the graph of $f^{\prime}(x)$ to be:
a) Where is $f(x)$ increasing and concave down?
b) Where is $f(x)$ increasing at an increasing rate?

2. Given the following table of values for t in seconds and $v(t)$ in meters per second:

t	2	4	6	8	10
$\mathrm{v}(\mathrm{t})$	-3	2	5	7	12

Estimate a(5)
3. Given the following line graph for $f^{\prime}(x)$
a) What are the critical points?

b) Where is there a relative maximum/minimum for $f(x)$? Justify your reasoning.
c) Where is $f(x)$ increasing/decreasing? Justify your reasoning.
4. Given the following equation: $\quad f(x)=x^{3}-6 x^{2}+12 x$
a) Find all relative extrema.
b) Find all inflection points.
c) Find all values of c that are guaranteed by MVT on [0, 4]
5. Use the table below to sketch a graph of the function $f(x)$.

x	$(-\infty,-2)$	-2	$(-2,-1)$	-1	$(-1,2)$	0	$(2,4)$	4	$(4, \infty)$
f		0		DNE		0		6	
f^{\prime}	+		+		+		+	DNE	+
$\mathrm{f}^{\prime \prime}$	+		+		-		+		+

6. Suppose you have 80 linear feet of fencing to enclose a rectangular space for a garden. Find the largest possible area that can be enclosed with this much fencing. What are the dimensions that yield this area?
7. Squares of equal sides are cut of a 20×24 rectangle and folded up to form a box with an open top. What are the dimensions of the squares to form the largest possible volume?
8. Find the antiderivative of each of the following:
a) $f^{\prime}(x)=2 x^{3}-5 x^{2}-3 x+2$
b) $f^{\prime}(x)=\cos x-2 \sec ^{2} x$
