AP Calculus AB Review Chapter 4 Test 2

p. $2821,5,7,13,29,53,54$
p. 26313

Additional problems
**Study example 5 on p. 261.

1. Now, suppose the radius of the circle was 4 , i.e. equation of the semicircle was
$y=\sqrt{16-x^{2}}$
Calculate the area of the largest rectangle that can be inscribed in this circle.
2. Find the critical values of $f(x)=x^{4}+4 x^{3}-2$
a) Find all relative extrema.
b) Find the value(s) of c guaranteed by MVT on the interval from [-2, 1]
3. Find all asymptotes and extrema of $y=\frac{x^{2}}{x^{2}-4 x+3}$
4. Sketch a graph of a function with the given properties.

x	-1	0	1	$(-\infty,-1)$	$(0,1)$	$(-1,0)$	$(1, \infty)$	$(-\infty, 0)$	$(0, \infty)$,
f	-1	0	1						
f^{\prime}				+	+	-	-		
f^{\prime}								-	-

5. a) You have 40 linear feet of fencing with witch to enclose a rectangular space for a garden. Find the largest possible area that can be enclosed with this much fencing and the dimensions.
Ans: 10×10
b) Suppose one side is protected by a barn. Now find the dimensions and largest area that can be enclosed.
6. Square of equal sides are cut out of a 10x16 rectangle. The sides are folded up to form a box with an open top. What are the dimensions of the squares to form the largest possible volume?
7. Given the table below Find the acceleration at $\mathrm{t}=8 \mathrm{sec}$.

Time (seconds)	0	6	12	18
Velocity $(\mathrm{m} / \mathrm{s})$	50	30	18	0

