Name: _____

1. If $f''(x) = (x - 3)(x + 4)^2(x - 2)$, find all inflection points.

$$2. \lim_{h \to 0} \frac{\cos\left(\frac{\pi}{2} + h\right) - \cos\frac{\pi}{2}}{h} =$$

- 3. From Limit Laws in Section 2.2 a) $\lim_{x\to 0} \frac{\sin^2 3x}{3x}$ b) $\lim_{x\to 0} \frac{1-\cos x}{x}$
- 4. If $f'(x) = \cos x$ and $f(\pi/2) = 4$, then f(x) = ?

×	0	1	2	3	4
f(x)	$\frac{1}{2}$	1 3	1	-1	3
g(x)	-2	1	$-\frac{1}{2}$	2	$-\frac{1}{3}$
f'(x)	3 2	ыlω	$\frac{1}{4}$	0	- <mark>4</mark> -5
g'(x)	-1	2 3	-4	-3	$-\frac{1}{3}$

5. Use the table to find the following:

$$\frac{d}{dx}(f(g(3)))$$

6. If
$$g(x) = \frac{-3x - f(x)}{f(x)}$$
 and $f(1) = 2$ and $f'(1) = -3$, then $g'(1) = ?$

$7. \int_{-3}^{1} \sqrt{5} x^{-3} $	3. If a) <i>f(x) = 5, then f'(2) = ?</i>	b) $f(x) = \pi^5$, then $f'(2) = ?$
-------------------------------------	--	--------------------------------------

9. What is the slope of the line tangent to $y = cos^2(2x + \pi)$ at $x = 3\pi/4$?

10. Find the horizontal asymptotes of $f(x) = \frac{2-|x|}{x}$

11. If f(c) is a local maximum of a continuous function f on an open interval (a, b), then f'(c) = 0. Is this true or false? Justify your answer.

12. Find all critical values and relative max/min of each:

a)
$$f'(x) = \frac{2}{3}x^{-1/3}$$
 b) $f'(x) = \frac{x^2 - 5}{x}$

13. A particle moves along the x-axis and the position for $0 \le t \le 10$ is given by $s(t) = 3\cos(\frac{\pi}{3}t)$ Find the acceleration of the particle at t = 4. Is the particle speeding up, slowing down or neither?