AP Calculus 5-1 to 5-3 Review Problems

1. Suppose $\mathrm{f}(\mathrm{x})=\int_{2}^{\mathrm{g}} x^{2}+1 d x$, find the Riemann sum with $\mathrm{n}=6$ by:
a. left endpoints
b. right endpoints
c. midpoints
d. trapezoids
e. exact answer
2. Evaluate each:
a. $\int_{1}^{8} \sqrt[3]{x^{2}} d x$
b. $\int_{-2}^{5} 7 d x$
c. $\int_{0}^{3}\left(x^{2}+2 x+5\right) d x$
d. $\int_{\pi}^{2 \pi} \tan \theta d \theta$
3. p. 3212,3
4. Find the exact area under $y=x+4$ on the interval $[2,6]$.
5. Find the exact area bounded by the x-axis and $y=\sqrt{4-x^{2}}$
6. Write the integral for the following:

7) Let $\mathrm{F}(\mathrm{x})=\int_{0}^{x} f(t) d t$ and the graph of f is shown.
a) Evaluate: $F(0), F(1)$ and $F(4)$
b) Evaluate: $F(5), F(7), F(8)$
c) At what value of t does F have a maximum value?
d) On what interval(s) is F decreasing?
e) Draw a sketch of the graph of F.

Answers:

1. a) 145
b) 205
c) 173.5
d) 175
e) 174
2. a) $93 / 5$
b) 49
c) 33
d) undefined
3. 2) a) $0,1 / 2,0,-1 / 2,0,1 \frac{\mathbf{1}}{\mathbf{2}}, 4 \frac{\mathbf{1}}{\mathbf{2}}$
b) ≈ 6 c) $\min @ 3$
d) $\max @ 7$
d)
1. 32

2. 2π
3. $\int_{-1}^{2}(-2 x+1) d x$
4. a) $0,2,12$
b) $10,2,0$
c) $t=4$
d) $(4,8)$
e)

