## AP Calc – Yet another review for Chapter 5 – Test 1

1. Let  $H(x) = \int_0^x f(t) dt$ , where f is the continuous function with domain [0, 12] as shown in the graph.

a) Find H(0).

- b) On what interval is H increasing? Explain.
- c) On what interval is the graph of H concave up? Explain.
- d) Is H(12) positive or negative? Explain.
- e) Where does H achieve its maximum value? Explain.
- f) Where does H achieve its minimum value? Explain.



2. The rate of fuel consumption (in gallons per minute) recorded during a plane flight is given by a twice differentiable function R of time t, minutes is shown in the table.

| t    | 0  | 30 | 40 | 50 | 70 | 90 |
|------|----|----|----|----|----|----|
| R(t) | 20 | 30 | 40 | 55 | 65 | 70 |

a) Approximate the total fuel consumption using left Riemann Sums with 5 subintervals.

b) Is your approximation an over or underestimate? Explain why.

#3 Taken from:

## 2005 AP<sup>®</sup> CALCULUS AB FREE-RESPONSE QUESTIONS

| Distance $x$ (cm)       | 0   | 1  | 5  | 6  | 8  |
|-------------------------|-----|----|----|----|----|
| Temperature $T(x)$ (°C) | 100 | 93 | 70 | 62 | 55 |

- 3. A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature T(x), in degrees Celsius (°C), of the wire x cm from the heated end. The function T is decreasing and twice differentiable.
  - (a) Estimate T'(7). Show the work that leads to your answer. Indicate units of measure.
  - (b) Write an integral expression in terms of T(x) for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.
  - (c) Find  $\int_0^8 T'(x) dx$ , and indicate units of measure. Explain the meaning of  $\int_0^8 T'(x) dx$  in terms of the temperature of the wire.
  - (d) Are the data in the table consistent with the assertion that T''(x) > 0 for every x in the interval 0 < x < 8? Explain your answer.

## Answers:

1. a) 0 because  $\int_0^0 = 0$  b)  $[0, 6] \int_0^6 = positive$  c) Need (+) slope, so (9, 12) d)  $H(12) = \int_0^{12} f(t)dt > 0$  will result in a (+) net area e) H(6) since  $\int_0^6$  will result in largest area f) H(0) since area = 0. All other values will have a net area > 0

2. a) S = 20(30) + 30(10) + 40(10) + 55(20) + 65(20) = 3700 gallons
b) Underestimate since the curve is increasing with left Riemann sums

3.  
(a) 
$$\frac{T(8) - T(6)}{8 - 6} = \frac{55 - 62}{2} = -\frac{7}{2} \circ C/cm$$
(b) 
$$\frac{1}{8} \int_{0}^{8} T(x) dx$$
Trapezoidal approximation for 
$$\int_{0}^{8} T(x) dx$$

$$A = \frac{100 + 93}{2} \cdot 1 + \frac{93 + 70}{2} \cdot 4 + \frac{70 + 62}{2} \cdot 1 + \frac{62 + 55}{2} \cdot 2$$
Average temperature  $\approx \frac{1}{8} A = 75.6875 \circ C$ 
(c) 
$$\int_{0}^{8} T'(x) dx = T(8) - T(0) = 55 - 100 = -45 \circ C$$
The temperature drops  $45^{\circ}$ C from the heated end of the wire to the other end of the wire.  
(d) Average rate of change of temperature on  $[1, 5]$  is  $\frac{70 - 93}{5 - 1} = -5.75$ .  
Average rate of change of temperature on  $[5, 6]$  is  $\frac{62 - 70}{6 - 5} = -8$ .  
No. By the MVT,  $T'(c_1) = -5.75$  for some  $c_1$  in the interval  $(1, 5)$  and  $T'(c_2) = -8$  for some  $c_2$  in the interval  $(c_1, c_2)$ . Therefore  $T''$  is not positive for every  $x$  in  $[0, 8]$ .  
Units of  $\circ$ C/cm in (a), and  $\circ$ C in (b) and (c)  
1 : units in (a), (b), and (c)