AP Calc - Yet another review for Chapter 5 - Test 1

1. Let $H(x)=\int_{0}^{x} f(t) d t$, where f is the continuous function with domain $[0,12]$ as shown in the graph.
a) Find $\mathrm{H}(0)$.
b) On what interval is H increasing? Explain.
c) On what interval is the graph of H concave up? Explain.
d) Is $\mathrm{H}(12)$ positive or negative? Explain.
e) Where does H achieve its maximum value? Explain.
f) Where does H achieve its minimum value? Explain.

2. The rate of fuel consumption (in gallons per minute) recorded during a plane flight is given by a twice differentiable function R of time t , minutes is shown in the table.

t	0	30	40	50	70	90
$\mathrm{R}(\mathrm{t})$	20	30	40	55	65	70

a) Approximate the total fuel consumption using left Riemann Sums with 5 subintervals.
b) Is your approximation an over or underestimate? Explain why.
\#3 Taken from:

2005 AP $^{\ominus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

Distance $x(\mathrm{~cm})$	0	1	5	6	8
Temperature $T(x)\left({ }^{\circ} \mathrm{C}\right)$	100	93	70	62	55

3. A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature $T(x)$, in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, of the wire $x \mathrm{~cm}$ from the heated end. The function T is decreasing and twice differentiable.
(a) Estimate $T^{\prime}(7)$. Show the work that leads to your answer. Indicate units of measure.
(b) Write an integral expression in terms of $T(x)$ for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.
(c) Find $\int_{0}^{8} T^{\prime}(x) d x$, and indicate units of measure. Explain the meaning of $\int_{0}^{8} T^{\prime}(x) d x$ in terms of the temperature of the wire.
(d) Are the data in the table consistent with the assertion that $T^{\prime \prime}(x)>0$ for every x in the interval $0<x<8$? Explain your answer.

Answers:

1. a) 0 because $\int_{0}^{0}=0 \quad$ b) $[0,6] \int_{0}^{6}=$ positive c) Need (+) slope, so $(9,12)$
d) $\mathrm{H}(12)=\int_{0}^{12} f(t) d t>0$ will result in a $(+)$ net area
e) $\mathrm{H}(6)$ since \int_{0}^{6} will result in largest area
f) $\mathrm{H}(0)$ since area $=0$. All other values will have a net area >0
2. a) $S=20(30)+30(10)+40(10)+55(20)+65(20)=3700$ gallons
b) Underestimate since the curve is increasing with left Riemann sums
3.

(a) $\frac{T(8)-T(6)}{8-6}=\frac{55-62}{2}=-\frac{7}{2}^{\circ} \mathrm{C} / \mathrm{cm}$
(b) $\frac{1}{8} \int_{0}^{8} T(x) d x$

Trapezoidal approximation for $\int_{0}^{8} T(x) d x$:
$A=\frac{100+93}{2} \cdot 1+\frac{93+70}{2} \cdot 4+\frac{70+62}{2} \cdot 1+\frac{62+55}{2} \cdot 2$
Average temperature $\approx \frac{1}{8} \mathrm{~A}=75.6875^{\circ} \mathrm{C}$
(c) $\int_{0}^{8} T^{\prime}(x) d x=T(8)-T(0)=55-100=-45^{\circ} \mathrm{C}$

The temperature drops $45^{\circ} \mathrm{C}$ from the heated end of the wire to the other end of the wire.
(d) Average rate of change of temperature on $[1,5]$ is $\frac{70-93}{5-1}=-5.75$. Average rate of change of temperature on $[5,6]$ is $\frac{62-70}{6-5}=-8$. No. By the MVT, $T^{\prime}\left(c_{1}\right)=-5.75$ for some c_{1} in the interval $(1,5)$ and $T^{\prime}\left(c_{2}\right)=-8$ for some c_{2} in the interval $(5,6)$. It follows that T^{\prime} must decrease somewhere in the interval $\left(c_{1}, c_{2}\right)$. Therefore $T^{\prime \prime}$ is not positive for every x in $[0,8]$.

Units of ${ }^{\circ} \mathrm{C} / \mathrm{cm}$ in (a), and ${ }^{\circ} \mathrm{C}$ in (b) and (c)

1 : answer
$3:\left\{\begin{array}{l}1: \frac{1}{8} \int_{0}^{8} T(x) d x \\ 1: \text { trapezoidal sum } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { value } \\ 1: \text { meaning }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { two slopes of secant lines } \\ 1: \text { answer with explanation }\end{array}\right.$

1 : units in (a), (b), and (c)

