AP Calculus - Chapter 5 - Integral and Area Under Curve Review

54. The graph of a function f consists of a semicircle and two line segments as shown below.

Let $\mathrm{g}(\mathrm{x})=\int_{1}^{x} f(t) d t$.
a) Find $g(1)$
b) Find $g(3)$
c) Find g(-1)
d) Find all values of x on the open interval $(-3,4)$ at which g has a relative maximum.
e) Write an equation for the tangent line to the graph of g at $x=-1$.
f) Find the x-coordinate of each point of inflection of the graph of g on the open interval (-3, 4).

AP ${ }^{\text {Examination Preparation }}$

low may use a graphing calculator to solve the following problems. 58. The rate at which water flows out of a pipe is given by a differentiable function R of time t. The table below records the rate at 4 hour intervals for a 24 -hour period.

t (hours)	$R(t)$ (gallons per hour)
0	9.6
4	10.3
8	10.9
12	11.1
16	10.9
20	10.5
24	9.6

[^0]59. Let f be a differentiable function with the following properties.
i. $f^{\prime}(x)=a x^{2}+b x$
ii. $f^{\prime}(1)=-6$ and $f^{\prime \prime}(x)=6$
iii. $\int_{1}^{2} f(x) d x=14$
Find $f(x)$. Show your work.
60. The graph of the function f, consisting of three line segments, is shown below.

Let $g(x)=\int_{1}^{x} f(t) d t$.
(a) Compute $g(4)$ and $g(-2)$.
(b) Find the instantaneous rate of change of g, with respect to x, at $x=2$.
(c) Find the absolute minimum value of g on the closed interval $[-2,4]$. Justify your answer.
(d) The second derivative of g is not defined at $x=1$ and $x=2$. Which of these values are x-coordinates of points of inflection of the graph of g ? Justify your answer.

[^0]: (a) Use the Trapezoidal Rule with 6 subdivisions of equal length to approximate $\int_{0}^{24} R(t) d t$. Explain the meaning of your answer in terms of water flow, using correct units.
 (b) Is there some time t between 0 and 24 such that $R^{\prime}(t)=0$? Justify your answer.
 (c) Suppose the rate of water flow is approximated by $Q(t)=0.01\left(950+25 x-x^{2}\right)$. Use $Q(t)$ to approximate the average rate of water flow during the 24 -hour period. Indicate units of measure.

