1. Given $\mathrm{f}(\mathrm{x})=\sqrt{x-1}$, find the value of c such that $\mathrm{f}(\mathrm{c})$ is the average value on $[1,10]$.
2. Given $f(x)=x^{2}$, find the value of c such that $f(c)$ is the average value on $[0,6]$.
3. Find the volume of the solid obtained by revolving about the x-axis, the region bounded by the graphs of $y=x^{2}+4$, the x-axis, the y-axis and the line $x=3$.
4. Find the volume of the solid bounded by $y=x^{3}, x=2$ and the x-axis revolved about the line $x=2$.
5. Find the volume of the solid that results when the region bounded by $y=v x, y=2 x-1, y=0$ and $x=0$ is revolved around the y-axis.
6. Ben is about to haul up a 32 m length of rope hanging from the top of a building (which is 32 m above the ground also). How much work will it take to haul up the rope if it weighs $1.8 \mathrm{~N} / \mathrm{m}$? Assume uniform weight.
7. Suppose $f(x)=x e^{x}$ and $g(x)=\sin x+1$
a) Find the area of the region in the first quadrant bounded by the graphs of $f(x), g(x)$ and $x=0$.
b) The volume of the region in part (a) about the x-axis.
c) Suppose the region in part (a) is the base of a solid. For this solid, the cross sections perpendicular to the x axis are squares with bases extending from $y=f(x)$ to $y=g(x)$. Find the volume of this solid.
8. Find the area between $y=2 \cos x$ and $y=\cos (x)$ on $[0, \pi / 2]$
9. Ravin Industries, a manufacturer of cookies, stores it cases of cookies in an air-conditioned warehouse for shipment every 14 days. RVR (the owner) tries to keep 600 cases on reserve to meet occasional peaks in demand, so a typical 14day inventory function can be expresses as:
$I(t)=600+600 t, 0 \leq t \leq 14$
Find RVR's average daily inventory for the 14-day period.

Answers:

1. $c=5$
2. $c=2 \sqrt{ } 3$
3. $843 \pi / 3$
4. $16 \pi / 5$
5. $23 \pi / 60$
6. 921.6 J
7.a) $0.54901 u^{2}$
b) $0.96679 \pi u^{3}$
c) $0.45159 u^{3}$
7. $1 u^{2}$
8. 4800 cases
