Name:

d) 2xsinx³

DO NOT USE Calculator unless the problems notes calc required!

- 1. Using the substitution u = 2x + 1, $\int_0^1 \sqrt[3]{2x + 1} dx$ is equivalent to: a) $\int_0^1 \sqrt[3]{u} du$ b) $2 \int_0^1 \sqrt[3]{u} du$ c) $\frac{1}{2} \int_0^1 \sqrt[3]{u} du$ d) $\int_1^3 \sqrt[3]{u} du$ e) $\frac{1}{2} \int_1^3 \sqrt[3]{u} du$
- 2. $\frac{d}{dx} \left(\int_{4}^{x^2} \sin(t^3) dt \right) =$ a) $\sin x^2$ b) $-\cos x^6$ c) $2x \sin x^6$

d) 2xcosx⁶

3. The graph of f' the derivative of f is shown. If f(1) = -4, then f(7) = a a) -4 b) -1 c) 0 d) 1 e) 9

4. The regions A, B and C in the figure are bounded by the graph of the function f and the x-axis. The areas of regions A, B and C are 12, 25 and 3 respectively. What is the value of $\int_{-4}^{7} (f(x) + 3)dx$? a) -10 b) 10 c) 23 d) 33

5. If a trapezoidal sum <u>under</u> approximates $\int_0^5 f(x) dx$, and a **RIGHT** Riemann sum <u>over</u> approximates $\int_0^5 f(x) dx$, which of the following could be the graph of y = f(x)?

6. A particle moves along the x-axis so that at any time t > 0, its acceleration is given by $a(t) = \sqrt{2t - 1}$. If the velocity of the particle at t = 1 is $6\frac{1}{3}$ m/s, find the velocity of the particle at t = 5. a) 4 b) 5 c) 6 d) 10

e) 15

7. Let h be the function given by $h(x) = \int_0^x (t^2 - 3t - 40) dt$. On which of the following intervals is h decreasing? a) $5 \le x \le 8$ b) $-8 \le x \le -5$ c) $-8 \le x \le 5$ d) $-5 \le x \le 8$ e) $-3 \le x \le 10$

8.
$$\int \frac{1}{x^4} dx =$$
 a) $-\frac{1}{5x^5} + C$ b) $-\frac{1}{3x^3} + C$ c) $\frac{1}{3x^3} + C$ d) $\frac{1}{5x^5} + C$ e) $-\frac{x^5}{5} + C$

9.
$$\int (\sin(4x) + \cos(4x))dx =$$

a)
$$-4\sin(4x) + 4\cos(4x) + C$$

b)
$$4\sin(4x) - 4\cos(4x) + C$$

c)
$$-\frac{1}{4}\sin(4x) + \frac{1}{4}\cos(4x) + C$$

d)
$$\frac{1}{4}\sin(4x) - \frac{1}{4}\cos(4x) + C$$

e)
$$\frac{1}{4}\sin(4x) + \frac{1}{4}\cos(4x) + C$$

10. The rate at which customers arrive at a counter to be served is modeled by the function F defined by $F(t) = 12 + 6\cos(\frac{t}{2})$ for $0 \le t \le 60$, where F(t) is measured in customers per minute and t is measured in minutes. To the nearest whole number, how many customers arrive at the counter over the 60-minute period? *Calculator Required

a) 720 b) 725 c) 732 d) 744 e) 756

11. A particle moves along the x-axis with a velocity given by v(t) = 2 + sin t. When t = 0 the particle is at x = -2. Where is the particle when $t = \pi$?

a) π b) 2 π c) π – 1 d) π – 2 e) π + 1

12. Evaluate: $\int_{-1}^{0} \frac{x^2}{\sqrt[3]{2x^3+4}} dx$

a)
$$\frac{-5}{12}$$
 b) $\frac{4}{15}$ c) 0 d) $\frac{5}{12}$ e) Not integrable on $-1 \le x \le 0$

13. If
$$\int_{-2}^{5} f(x) dx = -12$$
 and $\int_{8}^{-2} f(x) dx = 4$, what is the value of $\int_{5}^{8} f(x) dx$?
a) -16 b) -8 c) 0 d) 4 e) 8

14. The graph of the piecewise linear function
$$f$$
 is shown.
If $g(x) = \int_{-2}^{x} f(t) dt$, which of the following values is the greatest?
a) g(-4) b) g(-2) c) g(0) d) g(5) e) g(7)

15. The graph of the function f is shown for $0 \le x \le 5$. Which of the following has the least value?

a) $\int_{1}^{5} f(x) dx$

- b) Left Riemann sum approximation of $\int_{1}^{5} f(x) dx$ with 4 subintervals of equal length
- c) Right Riemann sum approximation of $\int_{1}^{5} f(x) dx$ with 4 subintervals of equal length
- d) Midpoint Riemann sum approximation of $\int_{1}^{5} f(x) dx$ with 4 subintervals of equal length
- e) Trapezoidal sum approximation of $\int_{1}^{5} f(x) dx$ with 4 subintervals of equal length

16. The graph of the function f shown has horizontal tangents at x = 1 and x = -2. It also has zero's at x = -3, x = -1 and x = 2. Let g be the function defined by $g(x) = \int_0^x f(t)dt$. For what values of x does the graph of g have a point of inflection?

a) -2 only c) 1 only e) -2 and 1 b) -1 only d) 2 only f) -3, -1 and 2

17. The	e table gi	ves val	ues of a	function f ar	nd its derivative	e at selected
values	of <i>x</i> . If <i>f</i> ′	is cont	inuous c	on the interva	al [-6, -1], what	is the value of
$\int_{-4}^{-2} f'$	(x)dx?					
a) -19	b) -10	c) 0	d) 1	e) 9		

Х	-6	-4	-2	-1
<i>f(x)</i>	8	9	10	11
f'(x)	-2	-5	-9	-1

18. If
$$\int_{a}^{b} f(x)dx = 2a - 3b$$
, then $\int_{a}^{b} (f(x) + 3)dx =$
a) $2a - 3b + 3$ b) $3b - 3a$ c) $-a$ d) $5a - 6b$ e) $a - 6b$

19. If
$$\int_{1}^{3} f(x)dx = p$$
 and $\int_{1}^{7} f(x)dx = -4$, what is the value of $\int_{7}^{3} (x + f(x))dx$?
a) $p + 4$ b) $p - 4$ c) $16 - p$ d) $-16 - p$ e) $-16 + p$

20. Find
$$\int_0^2 3x^2 f(x^3) dx$$
 if $\int_0^8 f(t) dt = k$
a) k^3 b) 9k c) 3k d) k e) $\frac{k}{3}$