\qquad

DO NOT USE Calculator unless the problems notes calc required!

1. Using the substitution $u=2 x+1, \int_{0}^{1} \sqrt[3]{2 x+1} d x$ is equivalent to:
a) $\int_{0}^{1} \sqrt[3]{u} d u$
b) $2 \int_{0}^{1} \sqrt[3]{u} d u$
c) $\frac{1}{2} \int_{0}^{1} \sqrt[3]{u} d u$
d) $\int_{1}^{3} \sqrt[3]{u} d u$
e) $\frac{1}{2} \int_{1}^{3} \sqrt[3]{u} d u$
2. $\frac{d}{d x}\left(\int_{4}^{x^{2}} \sin \left(t^{3}\right) d t\right)=$
a) $\sin x^{2}$
b) $-\cos x^{6}$
c) $2 x \sin x^{6}$
d) $2 x \sin x^{3}$
d) $2 x \cos x^{6}$
3. The graph of f^{\prime} the derivative of f is shown. If $f(1)=-4$, then $f(7)=$
a) -4
b) -1
c) 0
d) 1
e) 9
4. The regions A, B and C in the figure are bounded by the graph of the function f and the x -axis. The areas of regions A, B and C are 12,25 and 3 respectively. What is the value of $\int_{-4}^{7}(f(x)+3) d x$?
a) -10
b) 10
c) 23
d) 33
5. If a trapezoidal sum under approximates $\int_{0}^{5} f(x) d x$, and a RIGHT Riemann sum over approximates $\int_{0}^{5} f(x) d x$, which of the following could be the graph of $y=f(x)$?
(A)

6. A particle moves along the x-axis so that at any time $t>0$, its acceleration is given by $a(t)=\sqrt{2 t-1}$. If the velocity of the particle at $\mathrm{t}=1$ is $6 \frac{1}{3} \mathrm{~m} / \mathrm{s}$, find the velocity of the particle at $\mathrm{t}=5$.
a) 4
b) 5
c) 6
d) 10
e) 15
7. Let h be the function given by $h(x)=\int_{0}^{x}\left(t^{2}-3 t-40\right) d t$. On which of the following intervals is h decreasing?
a) $5 \leq x \leq 8$
b) $-8 \leq x \leq-5$
c) $-8 \leq x \leq 5$
d) $-5 \leq x \leq 8$
e) $-3 \leq x \leq 10$
8. $\int \frac{1}{x^{4}} d x=$
a) $-\frac{1}{5 x^{5}}+C$
b) $-\frac{1}{3 x^{3}}+C$
c) $\frac{1}{3 x^{3}}+C$
d) $\frac{1}{5 x^{5}}+C$
e) $-\frac{x^{5}}{5}+C$
9. $\int(\sin (4 x)+\cos (4 x)) d x=$
a) $-4 \sin (4 x)+4 \cos (4 x)+C$
b) $4 \sin (4 x)-4 \cos (4 x)+C$
c) $-\frac{1}{4} \sin (4 x)+\frac{1}{4} \cos (4 x)+C$
d) $\frac{1}{4} \sin (4 x)-\frac{1}{4} \cos (4 x)+C$
e) $\frac{1}{4} \sin (4 x)+\frac{1}{4} \cos (4 x)+C$
10. The rate at which customers arrive at a counter to be served is modeled by the function F defined by $F(t)=12+6 \cos \left(\frac{t}{\pi}\right)$ for $0 \leq \mathrm{t} \leq 60$, where $F(t)$ is measured in customers per minute and t is measured in minutes. To the nearest whole number, how many customers arrive at the counter over the 60-minute period?
*Calculator Required
a) 720
b) 725
c) 732
d) 744
e) 756
11. A particle moves along the x-axis with a velocity given by $v(t)=2+\sin t$. When $t=0$ the particle is at $x=-2$. Where is the particle when $t=\pi$?
a) π
b) 2π
c) $\pi-1$
d) $\pi-2$
e) $\pi+1$
12. Evaluate: $\quad \int_{-1}^{0} \frac{x^{2}}{\sqrt[3]{2 x^{3}+1}} d x$
a) $\frac{-5}{12}$
b) $\frac{4}{15}$
c) 0
d) $\frac{5}{12}$
e) Not integrable on $-1 \leq x \leq 0$
13. If $\int_{-2}^{5} f(x) d x=-12$ and $\int_{8}^{-2} f(x) d x=4$, what is the value of $\int_{5}^{8} f(x) d x$?
a) -16
b) -8
c) 0
d) 4
e) 8
14. The graph of the piecewise linear function f is shown.

If $g(x)=\int_{-2}^{x} f(t) d t$, which of the following values is the greatest?
a) $g(-4)$
b) $g(-2)$
c) $g(0)$
d) $g(5)$
e) $g(7)$

15. The graph of the function f is shown for $0 \leq x \leq 5$. Which of the following has the least value?
a) $\int_{1}^{5} f(x) d x$
b) Left Riemann sum approximation of $\int_{1}^{5} f(x) d x$ with 4 subintervals of equal length
c) Right Riemann sum approximation of $\int_{1}^{5} f(x) d x$ with 4 subintervals of equal length
d) Midpoint Riemann sum approximation of $\int_{1}^{5} f(x) d x$ with 4 subintervals of equal length
e) Trapezoidal sum approximation of $\int_{1}^{5} f(x) d x$ with 4 subintervals of
 equal length
16. The graph of the function f shown has horizontal tangents at $x=1$ and $x=-2$. It also has zero's at $x=-3, x=-1$ and $x=2$. Let g be the function defined by $g(x)=\int_{0}^{x} f(t) d t$. For what values of x does the graph of g have a point of inflection?
a) -2 only
c) 1 only
e) -2 and 1
b) -1 only
d) 2 only
f) $-3,-1$ and 2

17. The table gives values of a function f and its derivative at selected values of x. If f^{\prime} is continuous on the interval $[-6,-1]$, what is the value of $\int_{-4}^{-2} f^{\prime}(x) d x$?
a) -19
b) $-10 \quad$ c) 0
d) 1
e) 9

x	-6	-4	-2	-1
$f(x)$	8	9	10	11
$f^{\prime}(x)$	-2	-5	-9	-1

18. If $\int_{a}^{b} f(x) d x=2 a-3 b$, then $\int_{a}^{b}(f(x)+3) d x=$
a) $2 a-3 b+3$
b) $3 b-3 a$
c) -a
d) $5 a-6 b$
e) $a-6 b$
19. If $\int_{1}^{3} f(x) d x=p$ and $\int_{1}^{7} f(x) d x=-4$, what is the value of $\int_{7}^{3}(x+f(x)) d x$?
a) $p+4$
b) $p-4$
c) $16-p$
d) $-16-p$
e) $-16+p$
20. Find $\int_{0}^{2} 3 x^{2} f\left(x^{3}\right) d x$ if $\int_{0}^{8} f(t) d t=k$
a) k^{3}
b) $9 k$
c) $3 k$
d) k
e) $\frac{k}{3}$
