The figure shows the graph of f^{\prime}, the derivative of the function f, on the closed interval $-6 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=-3, x=0, x=2$ and $x=5$. The function f is twice differentiable with $f(2)=-4$.

(a) Find the x-coordinate of each of the points of inflection of the graph of f. Give a reason for your answer.
(b) At what value of x does f attain its absolute minimum AND maximum value on the closed interval $-6 \leq \mathrm{x} \leq 8$? Show the work that leads to your answers.
(c) Let g be the function defined by $g(x)=x f(x)$. Find an equation for the line tangent to the graph of g at $x=2$.
(d) Find all intervals on which the graph of f is concave up and has a positive slope. Explain your reasoning.
(e) For $-6 \leq x \leq 8$, sketch a possible graph of f.

(7) (a) POI when $f^{\prime \prime}(x)=0$ so need Howiz Tar of f^{\prime}

Possible @ $x=-3,0,2,5<$ Test slopes

Thus slopes of f^{\prime} change e $x=-3,0,2 \leqslant 5$ All are point e of inflect
(b) Need $f^{\prime}(x)=0$ for $C R 1 T$ PTS

CRIT PTS C e $x=-5,-1,2,7$ and endpts $-6,8$
Test $f^{\prime}(x)$

f^{\prime} changes fromincreasing/decrer $0-5,-1,7$
Rel Max © $x=-5, x=7$ Rel \min © $x=-1$
ABS MAX © $x=7 \leftarrow$ greater (H) AREA from S_{0}^{7} than S_{-S}^{0} and S_{0}^{e}
ABS MIN
ABS MIN@ $X=-1 \leftarrow$ least Area
(c) need slope e $x=2 \rightarrow g^{\prime}(x)=x f^{\prime}(x)+f(x)=$

$$
\begin{aligned}
& d \text { slope e } x=2 \rightarrow \quad g^{\prime}(x)=x f^{\prime}(x)+f(x) \\
& g^{\prime}(2)=2 f^{\prime}(2)+f(2)=2(0)+-4=-4=m \\
& g(2)=2(f(2))=2(-4)=8
\end{aligned}
$$

(d) Concave u_{p} when $f^{\prime \prime}>0$ positives to when $f^{\prime}>0$ (Increasing)
Thus Both $(t) \quad(-1,0) \cup(2,5)$

(e)

