AP Calculus Practice Exam
 AB Version - Section I - Part B

Calculators ARE Permitted On This Portion Of The Exam
 17 Questions - 50 Minutes

1) Give a value of c that satisfies the conclusion of the Mean Value Theorem for Derivatives for the function

$$
f(x)=-2 x^{2}-x+2
$$

on the interval $[1,3]$.
$\frac{9}{4}$
a)
b)
c)
d)
$\frac{5}{4}$
e)
2) The function

$$
f(x)=3 x^{3}+2 \mathrm{e}^{(2 x)}
$$

is invertible. Give the derivative of f^{-1} at $x=2$.
$9+4 e^{2}$
c) $\frac{1}{9+4 \mathrm{e}^{2}}$
1
d)
e)
3) The derivative of f is graphed below.

Give a value of x where f has a local maximum.
-4
a)
b)
$\frac{-5}{2}$
c)
1
e)
4) Let

$$
f(x)=\left\{\begin{array}{cc}
-x+5 & x<-2 \\
x^{2}+1 & -2 \leq x \text { and } x \leq 1 \\
2 x^{3}-1 & 1 \leq x
\end{array}\right.
$$

Which of the following is (are) true?

1) f is continuous at $x=-2$.
2) f is differentiable at $x=1$.
3) f has a local minimum at $x=0$.
4) f has an absolute maximum at $x=-2$.
a) 2 and 4
b) 3 only
c) 2 only
d) 1 and 3
e) 1 and 4
5) Given

$$
\left[\int_{0}^{50} 3 f(x) \mathrm{d} x=3, \int_{2}^{50} f(x) \mathrm{d} x=-4\right]
$$

Determine

$$
\int_{0}^{2} f(x) \mathrm{d} x
$$

a)
-3
a) 10
b)
c)
There is not enough information.
d)
e) ${ }^{5}$
6) Give the approximate location of a local maximum for the function

$$
f(x)=3 x^{3}+5 x^{2}-3 x
$$

a) $(-1.357,5.779)$
b) ${ }^{(0.2457,-3908)}$
c) ${ }^{(-1.357,5.713)}$
d) ${ }^{(0.2457,-.3216)}$ e) ${ }^{(-1.357,-3908)}$
7) Give the approximate average value of the function $f(x)=4 x \ln (2 x)$ over the interval [1,4]. 19.71
12.54
16.71
18.02182670
18.71
a)
b)
c)
d)
e)
8) The region enclosed by the graphs of

$$
\left[y=x^{3}-1, y=x-1\right]
$$

is rotated around the y-axis to generate a solid. What is the volume of the solid?
a)
0.8380
b)
0.7855
b)
c) 1.676
d) 1.047
e) 2.356
e)

$$
f(t)=\int_{0}^{8 t} \cos (x) d x
$$

9) What is the approximate instantaneous rate of change of the function
at $t=\pi / 7$?
a) -.9009
b)
c) 3.473
d) 0.4341
-1.030
10) What is the error when the integral

$$
\int_{0}^{1} \sin (\pi x) d x
$$

is approximated by the Trapezoidal rule with $n=3$?
0.011
a)
0.032
0.109
c)
d) 0.059
0.051
e)
11) The amount of money in a bank account is increasing at the rate of

$$
R(t)=10000 \mathrm{e}^{(0.06 t)}
$$

dollars per year, where t is measured in years. If $t=0$ corresponds to the year 2005, then what is the approximate total amount of increase from 2005 to 2007.
a) $\$ 18,350$
b) $\$ 4,500$
c) $\$ 21,250$
d) $\$ 32,560$
e) $\$ 16,250$
12) A particle moves with acceleration

$$
a(t)=3 t^{2}-2 t
$$

and its initial velocity is 0 . For how many values of t does the particle change direction?
a) 3
b) 2
c) 1
d) 0
e) 4
13) At what approximate rate (in cubic meters per minute) is the volume of a sphere changing at the instant when the surface area is 5 square meters and the radius is increasing at the rate of $1 / 3$ meters per minute?
5.271
b) 1.700
1.667
a)
b)
c)
d)
1.080
2.714
e)
14) A rectangle has one side on the x-axis and the upper two vertices on the graph of

$$
y=\mathrm{e}^{\left(-2 x^{2}\right)}
$$

Give a decimal approximation to the maximum possible area for this rectangle.
1.649
a)

1. -1
b)
c)
d)
e)
15) A rough approximation for $\ln (5)$ is 1.609 . Use this approximation and differentials to approximate $\ln (128 / 25)$.
1.633
1.632
1.585
1.597
a)
b)
e)
16) The function

$$
f(x)= \begin{cases}n x^{3}-x & x \leq 1 \\ m x^{2}+5 & 1<x\end{cases}
$$

is differentiable everywhere. What is n ?
a)
b)
c)
d)
e)
17) Which of the following functions has a vertical asymptote at $x=-1$ and a horizontal asymptote at y $=2$?
a) $f(x)=\frac{2 x^{2}+1}{x^{2}-1}$
b) $f(x)=\ln (2 x+2)$
c) $f(x)=\mathrm{e}^{(x-1)}+2$
d) $f(x)=\arctan (x-1)+2-\frac{1}{2} \pi$
e) $f(x)=\frac{x-1}{2 x+2}$

1) d)
2) e)
3) b)
4) b)
5) e)
6) a)
7) c)
8) c)
9) b)
10) d)
11) c)
12) c)
13) c)
14) e)
15) a)
16) d)
17) a)
