AP Calculus Practice Exam
 AB Version - Section I - Part B

Calculators ARE Permitted On This Portion Of The Exam
 17 Questions - 50 Minutes

1) Give a value of c that satisfies the conclusion of the Mean Value Theorem for Derivatives for the function $f(x)=x^{2}-x-2 \quad$ on the interval [1,3].
$\frac{5}{4}$
a)
b)
2
$\frac{3}{2}$
c)
d)
e)

a) ${ }^{9+6 e^{2}}$
b) 6
c) $\frac{1}{9+6 e^{2}}$
d) 1
e) ${ }^{\frac{1}{6}}$
2) The derivative of f is graphed below.

Give a value of x where f has a local minimum.
1
a)
$\frac{-3}{2}$
b)
There is no such value of x.
$0 \quad-3$
d) e)
4) Let

$$
f(x)=\left\{\begin{array}{cc}
-x+5 & x<-2 \\
x^{2}+1 & -2 \leq x \text { and } x \leq 1 \\
2 x^{3}-1 & 1 \leq x
\end{array}\right.
$$

Which of the following is (are) true?

1) f is continuous at $x=-2$.
2) f is differentiable at $x=1$.
3) f has a local minimum at $x=0$.
4) f has an absolute maximum at $x=-2$.
a) 2 only
b) 2 and 4
c) 3 only
d) 1 and 3
e) 1 and 4
5) Given

$$
\left[\int_{0}^{50} 5 f(x) \mathrm{d} x=4, \int_{2}^{50} f(x) \mathrm{d} x=-3\right]
$$

Determine

$$
\int_{0}^{2} f(x) d x
$$

$\frac{-11}{5}$
$\frac{19}{5}$
There is not enough information.
b)
c)
d)
e)
a)
6) Give the approximate location of a local maximum for the function

$$
f(x)=5 x^{3}+4 x^{2}-2 x
$$

a) $(-.7189,1.584)$
b) ${ }^{(0.1855,-2015)}$
c) ${ }^{(-.7189,1.647)}$
d) ${ }^{(0.1855,-.1386)}$
e) $(-.7189,-.2015)$
7) Give the approximate average value of the function $f(x)=2 x \ln (2 x)$ over the interval [1,4].
6.269
a)
b)
c)
d)
e)
8) The region enclosed by the graphs of

$$
\left[y=x^{3}-1, y=x-1\right]
$$

is rotated around the y-axis to generate a solid. What is the volume of the solid?
a) 1.047
0.7855
0.8380
2.356
1.676
a)
b)
c)
d)
e)
9) What is the approximate instantaneous rate of change of the function $f(t)=\int_{0}^{8 t} \cos (x) d x$ at $t=\pi / 3$?
a)
-1.333
-6.928
c) -.8660
d)
e)
10) What is the error when the integral $\int_{0}^{\int_{0}^{1 \sin (\pi x)} d x}$ is approximated by the Trapezoidal rule with $n=3$? 0.059
0.051
0.032
0.109
0.011
a)
b)
c)
d)
e)
11) The amount of money in a bank account is increasing at the rate of

$$
R(t)=10000 \mathrm{e}^{(0.06 t)}
$$

dollars per year, where t is measured in years. If $t=0$ corresponds to the year 2005, then what is the approximate total amount of increase from 2005 to 2007.
a) $\$ 16,250$
b) $\$ 18,350$
c) $\$ 32,560$
d) $\$ 21,250$
e) $\$ 4,500$
12) A particle moves with acceleration ${ }^{a(t)=4 t^{2}-2 t}$
and its initial velocity is 0 . For how many values of t does the particle change direction?
a)
b)
c)
d)
e) ${ }^{1}$
13) At what approximate rate (in cubic meters per minute) is the volume of a sphere changing at the instant when the surface area is 3 square meters and the radius is increasing at the rate of $1 / 5$ meters per minute?
1.228
1.905
b)
0.6484
c)
0.6000
0.6200
d)
e)
14) A rectangle has one side on the x-axis and the upper two vertices on the graph of

$$
y=\mathrm{e}^{\left(-3 x^{2}\right)}
$$

Give a decimal approximation to the maximum possible area for this rectangle.
0.8163
a)
0.4950
$-.8163$
1.346
0.4455
e)
15) A rough approximation for $\ln (5)$ is 1.609 . Use this approximation and differentials to approximate $\ln (257 / 50)$.
1.637
1.623
1.636
1.581
1.595
a)
b)
c)
d)
e)
16) The function

$$
f(x)= \begin{cases}n x^{3}-x & x \leq 1 \\ m x^{2}+5 & 1<x\end{cases}
$$

is differentiable everywhere. What is n ?
a)
b) -14
c) 13 d) -17
e) -9
17) Which of the following functions has a vertical asymptote at $x=-1$ and a horizontal asymptote at y $=2$?
$f(x)=\mathrm{e}^{(x-1)}+2$
b) $f(x)=\ln (2 x+2)$
$f(x)=\frac{2 x^{2}+1}{x^{2}-1}$
a)
b)
c)

$$
\begin{array}{ll}
f(x)=\arctan (x-1)+2-\frac{1}{2} \pi & \quad f(x)=\frac{x-1}{2 x+2}
\end{array}
$$

1) b)
2) e)
3) d)
4) c)
5) b)
6) c)
7) b)
8) e)
9) d)
10) a)
11) d)
12) e)
13) d)
14) b)
15) a)
16) a)
17) c)
