AP Calculus Practice Exam AB Version - Section I - Part B

Calculators ARE Permitted On This Portion Of The Exam

17 Questions - 50 Minutes

2) The function
$$f(x) = 3x^3 + 3e^{(2x)}$$
 is invertible. Give the derivative of f^{-1} at $x = 3$.
a) $9 + 6e^2$ b) 6 c) $\frac{1}{9 + 6e^2}$ d) 1 e) $\frac{1}{6}$

3) The **derivative** of *f* is graphed below.

Give a value of x where f has a local minimum.

-3

a) b) c) There is no such value of x.
$$\begin{pmatrix} 0 & -3 \\ d & e \end{pmatrix}$$

4) Let

$$f(x) = \begin{cases} -x+5 & x < -2\\ x^2+1 & -2 \le x \text{ and } x \le 1\\ 2x^3-1 & 1 \le x \end{cases}$$

Which of the following is (are) true?

1) *f* is continuous at x = -2.

2) *f* is differentiable at x = 1.

3) *f* has a local minimum at x = 0.

4) *f* has an absolute maximum at x = -2.

a) 2 only b) 2 and 4 c) 3 only d) 1 and 3 e) 1 and 4

5) Given

$$\left[\int_{0}^{50} 5 f(x) \, \mathrm{d}x = 4, \int_{2}^{50} f(x) \, \mathrm{d}x = -3\right]$$

Determine

 $\int_{0}^{2} f(x) dx$

6) Give the approximate location of a local maximum for the function $f(x) = 5x^3 + 4x^2 - 2x$

a) (-.7189, 1.584) b) (0.1855, -.2015) c) (-.7189, 1.647) d) (0.1855, -.1386) e) (-.7189, -.2015)

7) Give th	ne approximate aver	age value of the function	$f(x) = 2x\ln(2x)$	over the interval [1,4].
6.269	8.360	9.360	9.010913348	7.360	
a)	b)	c) d)	e)	

8) The region enclosed by the graphs of

$$[y = x^3 - 1, y = x - 1]$$

is rotated around the y-axis to generate a solid. What is the volume of the solid? 1.047 0.7855 0.8380 2.356 1.676 c) a) b) d) e) 9) What is the approximate instantaneous rate of change of the function $f(t) = \int_0^{\Re t} \cos(x) dx$ at $t = \pi/3$? -1.333 -.5000 -6.928-.8660-4. d) a) b) c) e) 10) What is the error when the integral $\int_{0}^{1} \sin(\pi x) dx$ is approximated by the Trapezoidal rule with n = 3? 0.059 0.051 0.032 0.109 0.011 a) d) b) c) e)

11) The amount of money in a bank account is increasing at the rate of $R(t) = 10000 e^{(0.06t)}$

dollars per year, where *t* is measured in years. If t = 0 corresponds to the year 2005, then what is the approximate total amount of increase from 2005 to 2007. a) \$16,250 b) \$18,350 c) \$32,560 d) \$21,250 e) \$4,500

12) A particle moves with acceleration $a(t) = 4t^2 - 2t$

13) At what approximate rate (in cubic meters per minute) is the volume of a sphere changing at the instant when the surface area is 3 square meters and the radius is increasing at the rate of 1/5 meters per minute?

1.228	1.905	0.6484	0.6000	0.6200
a)	b)	c)	d)	e)

14) A rectangle has one side on the *x*-axis and the upper two vertices on the graph of $v = e^{(-3x^2)}$

15) A rough approximation for $\ln(5)$ is 1.609. Use this approximation and differentials to approximate $\ln(257/50)$.

1.637	1.623	1.636	1.581	1.595
a)	b)	c)	d)	e)

16) The function

$$f(x) = \begin{cases} n x^3 - x & x \le 1 \\ m x^2 + 5 & 1 < x \end{cases}$$

is differentiable everywhere. What is n? -11 -14 13 -17 -9a) b) c) d) e)

17) Which of the following functions has a vertical asymptote at x = -1 and a horizontal asymptote at y = 2?

$$f(x) = e^{(x-1)} + 2 \qquad f(x) = \ln(2x+2) \qquad f(x) = \frac{2x^2 + 1}{x^2 - 1}$$

a)
$$f(x) = \arctan(x-1) + 2 - \frac{1}{2}\pi \qquad f(x) = \frac{x-1}{2x+2}$$

d)
e)

1) b)
2) e)
3) d)
4) c)
5) b)
6) c)
7) b)
8) e)
9) d)
10) a)
11) d)
12) e)
13) d)
14) b)
15) a)

15) a) 16) a) 17) c)