AP Calculus
2017-18 Last Min Review-2020 Edit
Name: \qquad

No Calc

1. $\lim _{x \rightarrow 0} \frac{e^{4 x}-1}{\sin (2 x)}=$
A) 0
B) 2
C) 4
D) Does not exist
2. For any positive integer $\mathrm{k}, \lim _{x \rightarrow \infty} \frac{\ln x}{x^{k}}$
A) 0
B) 1
C) $k+1$
D) ∞
3. $\lim _{x \rightarrow \infty} \frac{\cos x}{x^{2}+4 x}$
A) -1
B) 0
C) 1
D) Does not exist
4. $\lim _{x \rightarrow 0} \frac{\cos (2 \pi+h)-1}{h}$
A) -1
B) 0
C) 1
D) Does not exist
5. $\lim _{x \rightarrow 0} \frac{x^{2} e^{x}}{\cos x-1}$
A) $-\infty$
B) -2
C) 0
D) 1
6. Consider the equation $(x-1)^{2}+(y+1)^{2}=2$.
a) Find $\frac{d y}{d x}$
b) Write an equation for each horizontal tangent line to the graph.
c) The line $y=x+b$ is normal to the graph of $(x-1)^{2}+(y+1)^{2}=2$ at the point P. Find the value of b.
d) Write an equation of the tangent line to the graph of $(x-1)^{2}+(y+1)^{2}=2$ at the point P.
7. Consider $\frac{d y}{d x}=\frac{2(y-1)^{2}}{\sqrt{x}}$
a) Sketch a slope field for the differential equation at the six points indicated.
b) Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(1)=2$. Write an equation for the line tangent to the graph of f at the point $(1,2)$.

c) Find the particular solution $y=f(x)$ to the differential equation with initial condition $f(1)=2$.
8. Let f be a continuous function defined on the closed interval $-1 \leq x \leq 4$. The graph of f is shown and consists of three line segments. Let g be the function defined by
$g(x)=5+\int_{2}^{x} f(t) d t$ for $-1 \leq x \leq 4$
a) Find g(4)
b) On what intervals is g increasing? Justify your answer.

Graph of f
c) On the closed interval $-1 \leq x \leq 4$, find the absolute minimum value of g and find the absolute maximum value of g. Justify your answers.
d) Let $h(x)=x \cdot g(x)$. Find $h^{\prime}(2)$.

t (minutes)	0	3	5	6	9
$r(t)$ (rotations per minute)	72	95	112	77	50

9. Katie rode a stationary bike. The number of rotations per minute of the wheel of the stationary bike at time t minutes during Katie's ride is modeled by a differentiable function r for $0 \leq t \leq 9$ minutes. Values of $r(t)$ for selected values of t are shown in the table.
a) Estimate $r^{\prime}(4)$. Show the computations that lead to your answer. Indicate the units of measure.
b) Is there a time t, for $3 \leq t \leq 5$, at which $r(t)$ is 106 rotations per minute? Justify your answer.
c) Use left Riemannn Sum with four subintervals to approximate $\int_{0}^{9} r(t) d t$. Using correct units, explain the meaning of $\int_{0}^{9} r(t) d t$ in the context of the problem.
d) Bryce also rode a stationary bike. The number of rotations per minute of the wheel of the stationary bike at time t during Bryce's ride is modeled by the function s, defined by $s(t)=40+20 \pi \sin \left(\frac{\pi t}{18}\right)$ for $0 \leq t \leq 9$ minutes. Find the average number of rotations per minute of the wheel of the stationary bike for $0 \leq t \leq 9$ minutes.
