1.

x	3.9	3.99	3.999	3.9999	4.0001	4.001	4.01	4.1
$f(x)$	5	-25	125	-625	5.9999	5.999	5.99	5.9

The table above gives values of a function f at selected values of x. Which of the following conclusions is supported by the data in the table?
(A) $\lim _{x \rightarrow 4} f(x)=6$
(B) $\lim _{x \rightarrow 4} f(x)=6$
(C) $\lim _{x \rightarrow 4^{4}} f(x)=6$
(D) $\lim _{x \rightarrow 6^{+}} f(x)=4$
2.

If f is the function defined by $f(x)=\frac{x-9}{\sqrt{x}-3}$, then $\lim _{x \rightarrow 9} f(x)$ is equivalent to which of the following?
(A) $\lim _{x \rightarrow 9}(\sqrt{x}-3)$
$\frac{x-9}{\sqrt{x}-3} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{(x-9)(\sqrt{x}+3)}{(x-9)}$
(B) $\lim _{x \rightarrow 9}(\sqrt{x}+3)$
(C) $\lim _{x \rightarrow 9}\left(\frac{x^{2}-81}{x-9}\right)$

$$
\lim _{x \rightarrow 9} \sqrt{x}+3
$$

(D) $\frac{\lim _{l \rightarrow \infty}(x-9)}{\lim _{x \rightarrow 9}(\sqrt{x}-3)}$
3. Find each limit:

If $f(x)=\frac{\sin x-1}{\cos ^{2} x}$, then $\lim _{x \rightarrow \frac{y}{2}} f(x)$ is equivalent to which of the following?
(A) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{-1}{1+\sin x}$

$$
\begin{aligned}
\frac{\sin x-1}{1-\sin ^{2} x} & =\frac{\sin x-1}{(1-\sin x)(1+\sin x)}=\frac{-(1-\sin x)}{(1-\sin x)(1+\sin x)} \\
& =\frac{-1}{1+\sin x}
\end{aligned}
$$

(B) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x-1}{1+\sin ^{2} x}$
(C) $\lim _{x \rightarrow \frac{\pi}{2}} \sec x$
(D) $\quad \lim _{x \rightarrow \frac{\pi}{2}}(\tan x-\sec x)$
5. If f is the function defined by $f(x)=\frac{\frac{1}{x}-1}{x-1}$, then $\lim _{x \rightarrow 1} f(x)$ is equivalent to which of the following?
(A) $\lim _{x \rightarrow 1}\left(-\frac{1}{x}\right)$

$$
\begin{aligned}
\frac{\frac{1}{x}-1}{x-1} \cdot \frac{x}{x} & =\frac{1-x}{(x-1) x}=-\frac{(x-1)}{(x-1) x} \\
& =\frac{-1}{x}
\end{aligned}
$$

(B) $\quad \lim _{x \rightarrow 1}\left(\frac{1}{x^{2}}-1\right)$
(C) $\lim _{x \rightarrow 1}\left(\frac{x-1}{x-1}\right)$
(D) $\frac{\lim _{x \rightarrow 1}\left(\frac{1}{x}-1\right)}{\lim _{x \rightarrow 1}(x-1)}$
6.

$$
\text { The function } g \text { is given by } g(x)=\frac{7 x-26}{x-5} \text {. The function } h \text { is given by } h(x)=\frac{3 x+14}{2 x+1} \text {. If } f \text { is a function that satisfies } g(x) \leq f(x) \leq h(x) \text { for }
$$

7.

$$
\begin{aligned}
& 0<x<5, \text { what is } \lim _{x \rightarrow 2} f(x) ?=4 \\
& f(x)=\left\{\begin{array}{ccc}
-x^{2}+3 x+3 & \text { for } \quad x<2 \\
6 & \text { for } & x=2 \\
8-\frac{3}{2} x & \text { for } & x>2
\end{array}\right.
\end{aligned}
$$

Let f be the piecewise function defined above. Also shown is a portion of the graph of f. What is the value of $\lim _{x \rightarrow 2} f(f(x))$? $=15$
(A) -15
(B) -7
(C) -1
(D) $\frac{1}{2}$
8.

The function h is defined by $h(x)=\frac{x^{2}-7}{x-3}$. Which of the following statements must be true?
(A) $\lim _{x \rightarrow 3} h(x)=-\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=-\infty$

$$
\begin{aligned}
& \cos ^{+}=\frac{*}{-\operatorname{sinale}}=-\infty \\
& 3^{t}=\frac{\text { t }}{+ \text { ismael }}=+\infty
\end{aligned}
$$

(D) $\lim _{x \rightarrow 3} h(x)=+\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=+\infty$
9.

Let f be a function such that $\lim _{x \rightarrow 5} f(x)=\infty$. Which of the following statements must be true?
(f) $\lim _{x \rightarrow 5^{+}} f(x)=\infty$
(8) f is undefined at $x=5$.
(C)

The graph of f has a vertical asymptote at $x=5$.
(D) The graph of f has a vertical asymptote at $x=-5$.

t (hours)	6	8	10	12
$g(t)$ (cubic meters)	306	376	428	474

At an excavation site, the amount of dirt that has been removed, in cubic meters, is modeled by the function f defined above, where g is a differentiable function and t is measured in hours. Values of $g(t)$ at selected values of t are given in the table above.
10. (a) According to the model f, what is the average rate of change of the amount of dirt removed over the time intel $6 \leq t \leq 12$ hours?

$$
\begin{aligned}
& \text { t is the average rate of change of the amount of did removed over the time } \\
& 9 \frac{(12)-9(6)}{12-6}=\frac{474-306}{12-6}=\frac{268}{6}=28 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

(b) Use the data in the table to approximate $f^{\prime}(9)$, the instantaneous rate of change in the amount of dirt removed, in cubic meters per hour, at time

- $\frac{8}{1} \leqslant 9$

(d) Find $f^{\prime}(2)$, the instantaneous rate of change in the amount of dirt removed, in cubic meters per hour, at time $t=2$ hours.

$\lim _{t \rightarrow 2} \frac{t^{2}+10}{t-2}$

11.

Selected values of a function g are shown in the table above. What is the average rate of change of g over the interval $[-2,2]$?

$$
\frac{g(2)-g(-2)}{2--2}=\frac{5--3}{4}=\frac{8}{4}=2
$$

Let f be the function defined by $f(x)=e^{2 x}$. The average rate of change of f over the interval $[1, b]$ is 20 , where $b>1$. Which of the following is an equation that could be used to find the value of b ?
(A) $\quad f(b)=20$

$$
\rightarrow \frac{f(b)-f(1)}{b-1}=20
$$

(B) $\quad f(b)-f(1)=20$
(C) $\frac{f(b)-f(1)}{b-1}=20$
(D) $\frac{f(b)+f(1)}{2}=20$
12. The position of a particle is given by the following graph:
a) What is the speed of the particle at $t=4$ seconds?

$$
\text { G need slope }=0
$$

b) What is the speed of the particle at $t=2$ seconds?

$$
m=\frac{2}{3}
$$

13. Suppose f is the function shown. Then find:
a) $\lim _{x \rightarrow 2^{-}} f(x)=-(-2)^{2}+3(2)+3=5$
b) $\lim _{x \rightarrow 2^{+}} f(x)=8-\frac{3}{2}(2)=5$
c) $\lim _{x \rightarrow 2} f(x) 5$
d) $f(2)=6$

$$
f(x)=\left\{\begin{array}{ccc}
-x^{2}+3 x+3 & \text { for } & x<2 \\
6 & \text { for } & x=2 \\
8-\frac{3}{2} x & \text { for } & x>2
\end{array}\right.
$$

14. Suppose f is the function shown in the graph below:

Find the following limits:
a) $\lim _{x \rightarrow-2} f(x) \quad-2$ b) $\lim _{x \rightarrow-2} f(x) \quad{ }^{\text {c. }} \lim _{x \rightarrow-2} f(x) \quad{ }^{\text {d) }} \lim _{x \rightarrow-4} f(x)$

The graphs of $h(x)$ and $g(x)$ are shown. Solve each of the following.
$\begin{array}{lll}\left.\text { a) } \lim _{x \rightarrow 0} 0 \frac{h(x)}{g(x)}=\frac{\lim _{x \rightarrow 0}}{\lim _{x \rightarrow 0} g(x)}=\frac{h(x)}{0}=\frac{4}{0}\right) \lim _{x \rightarrow 1} \frac{h(x)}{g(x)}=\frac{2 \frac{1}{3}}{2}=\frac{7}{6} \quad \text { LU) }=\frac{-\frac{5}{3}+4}{}=- \\ \text { c) } \lim _{x \rightarrow 3} \frac{h(x)+2}{g(x)}=\frac{1+2}{5}=\frac{3}{5} & \text { d) } \lim _{x \rightarrow-2}[3 h(x)+2 g(x)]= \\ 3(0)+2(3)=6\end{array}$
Let $f(x)=2 x^{2}-1$ and P be the point $(-1,1)$.
a) Find the slope of the curve $y=f(x)$ at P.
$P(-1,1) \quad Q\left(x, 2 x^{2}-1\right)$

$\lim _{x \rightarrow-1} \frac{2 x^{2}-1-1}{x+1}=\frac{2 x^{2}-2}{x+1}=\frac{2(x-1)(x+1)}{(x-1)}=2(-1-1)=-4=m$
b) The equation of the tangent at P.

$$
y-1=-4(x+1)
$$

c) The equation of the normal at $P . \leadsto m_{\perp}=\frac{9}{4}$

$$
\begin{aligned}
& m=-4 \text { do } \\
& y-1=\frac{1}{4}(x+1)
\end{aligned}
$$

