1.

x	3.9	3.99	3.999	3.9999	4.0001	4.001	4.01	4.1
f(x)	5	-25	125	-625	5.9999	5.999	5.99	5.9

The table above gives values of a function f at selected values of x. Which of the following conclusions is supported by the data in the table?

A	$\lim_{x \to 4} f(x)$	= 6
---	-----------------------	-----

- $\textcircled{B} \qquad \lim_{x \to 4^-} f(x) = 6$
- $\bigcirc \qquad \lim_{x
 ightarrow 4^+} f\left(x
 ight) = 6$
- $\textcircled{D} \qquad \lim_{x \to 6^+} f(x) = 4$

2.

If f is the function defined by $f(x)=rac{x-9}{\sqrt{x}-3}$, then $\lim_{x
ightarrow 9}f(x)$ is equivalent to which of the following?

- $(\texttt{A}) \qquad \lim_{x \to 9} \left(\sqrt{x} 3\right)$
- $\textcircled{B} \qquad \lim_{x \to 9} \left(\sqrt{x} + 3 \right)$

3.Find each limit:

$\lim_{x \to \infty} \frac{1}{10 + e^{-x}} - \lim_{x \to 0} \frac{1}{\sin x - e^x} - \lim_{x \to 0} \frac{1}{3x^5 + 4x}$	$\lim_{x \to \infty} \frac{20}{10 + e^{-x}} =$	$\lim_{x \to 0} \frac{\cos x}{\sin x - e^x} =$	$\lim_{x\to 0} \frac{7x^5+5x^2+12x}{3x^5+4x}$ is
--	--	--	--

4. If $f(x) = rac{\sin x - 1}{\cos^2 x}$, then $\lim_{x o rac{x}{2}} f(x)$ is equivalent to which of the following?

- $(A) \qquad \lim_{x \to \frac{\pi}{2}} \frac{-1}{1 + \sin x}$
- $(B) \qquad \lim_{x \to \frac{x}{2}} \frac{\sin x 1}{1 + \sin^2 x}$
- $\bigcirc \qquad \lim_{x o rac{x}{2}} \sec x$
- $\bigcirc \qquad \lim_{x o rac{\pi}{2}} (an x \sec x)$

5. If *f* is the function defined by $f(x) = \frac{\frac{1}{x}-1}{x-1}$, then $\lim_{x \to 1} f(x)$ is equivalent to which of the following?

(A) $\lim_{x \to 1} \left(-\frac{1}{x} \right)$ (B) $\lim_{x \to 1} \left(\frac{1}{x^2} - 1 \right)$ (C) $\lim_{x \to 1} \left(\frac{x-1}{x-1} \right)$ (D) $\frac{\lim_{x \to 1} \left(\frac{1}{x} - 1 \right)}{\lim_{x \to 1} (x-1)}$

6.

The function g is given by $g(x) = \frac{7x-26}{x-5}$. The function h is given by $h(x) = \frac{3x+14}{2x+1}$. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for 0 < x < 5, what is $\lim_{x \to 2} f(x)$?

Let f be the piecewise function defined above. Also shown is a portion of the graph of f. What is the value of $\lim_{x \to 2} f(f(x))$?

(A) -15(B) -7

- © -1
- $\bigcirc \frac{1}{2}$

8.

The function h is defined by $h(x)=rac{x^2-7}{x-3}$. Which of the following statements must be true?

 $(A) \qquad \lim_{x \to 3^-} h(x) = -\infty \text{ and } \lim_{x \to 3^+} h(x) = -\infty$

- $egin{array}{c} \mathbb{B} & \lim_{x o 3^-} h(x) = +\infty ext{ and } \lim_{x o 3^+} h(x) = -\infty \end{array}$
- $\bigcirc \qquad \lim_{x \to 3^-} h(x) = -\infty ext{ and } \lim_{x \to 3^+} h(x) = +\infty$
- $\bigcirc \qquad \lim_{x \to 3^-} h(x) = +\infty ext{ and } \lim_{x \to 3^+} h(x) = +\infty$

Let f be a function such that $\lim_{x\to r^-} f(x) = \infty$. Which of the following statements must be true?

- (A) $\lim_{x \to 5^+} f(x) = \infty$
- (B) f is undefined at x = 5.
- (C) The graph of f has a vertical asymptote at x = 5.
- D The graph of f has a vertical asymptote at x = -5.

$f(t) = \begin{cases} t^2 + 2 \\ t^2 + 2 \end{cases}$	10t + 2	25 0	$\leq t <$	6		
$\int g(t)$	for $6 \le t \le 12$					
t (hours)	6	8	10	12		
q(t) (cubic meters)	306	376	428	474		

At an excavation site, the amount of dirt that has been removed, in cubic meters, is modeled by the function f defined above, where g is a differentiable function and t is measured in hours. Values of g(t) at selected values of t are given in the table above.

(a) According to the model f, what is the average rate of change of the amount of dirt removed over the time interval $6 \le t \le 12$ hours?

(b) Use the data in the table to approximate f'(9), the instantaneous rate of change in the amount of dirt removed, in cubic meters per hour, at time t = 9 hours. Show the computations that lead to your answer.

(d) Find f'(2), the instantaneous rate of change in the amount of dirt removed, in cubic meters per hour, at time t = 2 hours.

x	-2	-1	0	1	2
g(x)	-3	2	1	0	5

Selected values of a function g are shown in the table above. What is the average rate of change of g over the interval [-2, 2]?

Let f be the function defined by $f(x) = e^{2x}$. The average rate of change of f over the interval [1, b] is 20, where b > 1. Which of the following is an equation that could be used to find the value of b?

- (A) f(b) = 20
- (\mathbb{B}) f(b) f(1) = 20
- (c) $\frac{f(b)-f(1)}{b-1} = 20$
- $\bigcirc \qquad \frac{f(b)+f(1)}{2} = 20$

12. The position of a particle is given by the following graph:

- a) What is the speed of the particle at t = 4 seconds?
- b) What is the speed of the particle at t = 2 seconds?

- 13. Suppose *f* is the function shown. Then find:
- a) $\lim_{x \to 2^{-}} f(x)$ b) $\lim_{x \to 2^{+}} f(x)$
- c) $\lim_{x \to 2} f(x)$ d) f(2)

 $f\left(x
ight) = egin{cases} -x^2+3x+3 & {
m for} & x<2\ 6 & {
m for} & x=2\ 8-rac{3}{2}x & {
m for} & x>2 \end{cases}$

14. Suppose *f* is the function shown in the graph below:

The graphs of h(x) and g(x) are shown. Solve each of the following.

- a) $\lim_{x \to 0} \frac{h(x)}{g(x)} =$ b) $\lim_{x \to 1} \frac{h(x)}{g(x)} =$ c) $\lim_{x \to 3} \frac{h(x)+2}{g(x)} =$ d) $\lim_{x \to -2} [3h(x) + 2g(x)] =$
- Let $f(x) = 2x^2 1$ and P be the point (-1, 1).
 - a) Find the slope of the cure y = f(x) at P.
 - b) The equation of the tangent at P.
 - c) The equation of the normal at P.

