1.

x	3.9	3.99	3.999	3.9999	4.0001	4.001	4.01	4.1
$f(x)$	5	-25	125	-625	5.9999	5.999	5.99	5.9

The table above gives values of a function f at selected values of x. Which of the following conclusions is supported by the data in the table?
(A) $\quad \lim _{x \rightarrow 4} f(x)=6$
(B) $\lim _{x \rightarrow 4} f(x)=6$
(C) $\lim _{x \rightarrow 4^{+}} f(x)=6$
(D) $\quad \lim _{x \rightarrow 6^{+}} f(x)=4$
2.

If f is the function defined by $f(x)=\frac{x-9}{\sqrt{x}-3}$, then $\lim _{x \rightarrow 9} f(x)$ is equivalent to which of the following?
(A) $\quad \lim _{x \rightarrow 9}(\sqrt{x}-3)$
(B) $\quad \lim _{x \rightarrow 9}(\sqrt{x}+3)$
(C) $\lim _{x \rightarrow 9}\left(\frac{x^{2}-81}{x-9}\right)$
(D) $\frac{\lim _{2 \rightarrow-9}(x-9)}{\lim _{x \rightarrow 9}(\sqrt{x}-3)}$
3.Find each limit:
$\lim _{x \rightarrow \infty} \frac{20}{10+e^{-x}}=$
$\lim _{x \rightarrow 0} \frac{\cos x}{\sin x-e^{x}}=$
$\lim _{x \rightarrow 0} \frac{7 x^{5}+5 x^{2}+12 x}{3 x^{5}+4 x}$ is
4. If $f(x)=\frac{\sin x-1}{\cos ^{2} x}$, then $\lim _{x \rightarrow \frac{y}{2}} f(x)$ is equivalent to which of the following?
(A) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{-1}{1+\sin x}$
(B) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x-1}{1+\sin ^{2} x}$
(C) $\lim _{x \rightarrow \frac{\pi}{2}} \sec x$
(D) $\lim _{x \rightarrow \frac{\pi}{2}}(\tan x-\sec x)$
5. If f is the function defined by $f(x)=\frac{\frac{1}{x}-1}{x-1}$, then $\lim _{x \rightarrow 1} f(x)$ is equivalent to which of the following?
(A) $\quad \lim _{x \rightarrow 1}\left(-\frac{1}{x}\right)$
(B) $\lim _{x \rightarrow 1}\left(\frac{1}{x^{2}}-1\right)$
(C) $\lim _{x \rightarrow 1}\left(\frac{x-1}{x-1}\right)$
(D) $\frac{\lim _{x \rightarrow 1}\left(\frac{1}{x}-1\right)}{\lim _{x \rightarrow 1}(x-1)}$
6.

$$
\begin{aligned}
& \text { 6. The function } g \text { is given by } g(x)=\frac{7 x-26}{x-5} \text {. The function } h \text { is given by } h(x)=\frac{3 x+14}{2 x+1} \text {. If } f \text { is a function that satisfies } g(x) \leq f(x) \leq h(x) \text { for } \\
& 0<x<5 \text {, what is } \lim _{x \rightarrow 2} f(x) \text { ? } \\
& f(x)=\left\{\begin{array}{ccc}
-x^{2}+3 x+3 & \text { for } & x<2 \\
6 & \text { for } & x=2 \\
8-\frac{3}{2} x & \text { for } & x>2
\end{array}\right.
\end{aligned}
$$

Let f be the piecewise function defined above. Also shown is a portion of the graph of f. What is the value of $\lim _{x \rightarrow 2} f(f(x))$?
(A) -15
(B) -7
(C) -1
(D) $\frac{1}{2}$
8.

The function h is defined by $h(x)=\frac{x^{2}-7}{x-3}$. Which of the following statements must be true?
(A) $\lim _{x \rightarrow 3} h(x)=-\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=-\infty$
(B) $\quad \lim _{x \rightarrow 3} h(x)=+\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=-\infty$
(C) $\lim _{x \rightarrow 3^{-}} h(x)=-\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=+\infty$
(D) $\lim _{x \rightarrow 3} h(x)=+\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=+\infty$
9.

Let f be a function such that $\lim _{x \rightarrow 5^{-}} f(x)=\infty$. Which of the following statements must be true?
(A) $\lim _{x \rightarrow 5^{+}} f(x)=\infty$
(B) f is undefined at $x=5$
(C) The graph of f has a vertical asymptote at $x=5$.
(D) The graph of f has a vertical asymptote at $x=-5$.

$f(t)=\left\{\begin{array}{c\|c\|c\|c\|c\|}\mathrm{t}^{2}+10 \mathrm{t}+25 & 0 \leq t<6 \\ g(t) & \text { for } 6 \leq t \leq 12\end{array}\right.$
t (hours) 6 8 10 12 $g(t)$ (cubic meters) 306 376 428 474

At an excavation site, the amount of dirt that has been removed, in cubic meters, is modeled by the function f defined above, where g is a differentiable function and t is measured in hours. Values of $g(t)$ at selected values of t are given in the table above.
10.
(a) According to the model f, what is the average rate of change of the amount of dirt removed over the time interval $6 \leq t \leq 12$ hours?
(b) Use the data in the table to approximate $f^{\prime}(9)$, the instantaneous rate of change in the amount of dirt removed, in cubic meters per hour, at time $t=9$ hours. Show the computations that lead to your answer.
(d) Find $f^{\prime}(2)$, the instantaneous rate of change in the amount of dirt removed, in cubic meters per hour, at time $t=2$ hours.

x	-2	-1	0	1	2
$g(x)$	-3	2	1	0	5

11. Selected values of a function g are shown in the table above. What is the average rate of change of g over the interval $[-2,2]$?

Let f be the function defined by $f(x)=e^{2 x}$. The average rate of change of f over the interval $[1, b]$ is 20 , where $b>1$. Which of the following is an equation that could be used to find the value of b ?
(A) $\quad f(b)=20$
(B) $\quad f(b)-f(1)=20$
(C) $\frac{f(b)-f(1)}{b-1}=20$
(D) $\frac{f(b)+f(1)}{2}=20$
12. The position of a particle is given by the following graph:
a) What is the speed of the particle at $t=4$ seconds?
b) What is the speed of the particle at $t=2$ seconds?

13. Suppose f is the function shown. Then find:
a) $\lim _{x \rightarrow 2^{-}} f(x)$
b) $\lim _{x \rightarrow 2^{+}} f(x)$
c) $\lim _{x \rightarrow 2} f(x)$
d) $f(2)$
$f(x)=\left\{\begin{array}{ccc}-x^{2}+3 x+3 & \text { for } & x<2 \\ 6 & \text { for } & x=2 \\ 8-\frac{3}{2} x & \text { for } & x>2\end{array}\right.$
14. Suppose f is the function shown in the graph below:

					y					

Find the following limits:
a) $\lim _{x \rightarrow-2^{-}} f(x)$
b) $\lim _{x \rightarrow-2^{+}} f(x)$
c) $\lim _{x \rightarrow-2} f(x)$
d) $\lim _{x \rightarrow-4} f(x) \quad$ e) $\lim _{x \rightarrow 3} f(x)$

The graphs of $h(x)$ and $g(x)$ are shown. Solve each of the following.
a) $\lim _{x \rightarrow 0} \frac{h(x)}{g(x)}=$
b) $\lim _{x \rightarrow 1} \frac{h(x)}{g(x)}=$
c) $\lim _{x \rightarrow 3} \frac{h(x)+2}{g(x)}=$
d) $\lim _{x \rightarrow-2}[3 h(x)+2 g(x)]=$

Let $f(x)=2 x^{2}-1$ and P be the point $(-1,1)$.
a) Find the slope of the cure $y=f(x)$ at P .

b) The equation of the tangent at P.
c) The equation of the normal at P.

