AP Calculus Semester 1 Final - Additional Review

No Calculator Allowed

1. The figure shows the graph of f^{\prime}, the derivative of the function f, on the closed interval $-9 \leq x \leq 9$. The graph of f^{\prime} has tangent lines at $\mathrm{x}=-6, \mathrm{x}=2.5$, and $\mathrm{x}=6$. The function f is twice differentiable with $\mathrm{f}(-3)=-1$
a) For what values of x is the graph of f increasing? Decreasing?
b) For what values of x is the graph of f concave up? Concave down?

c) Find the x-coordinate of each local maximum and minimum of f. Justify your answer.
d) Find the x -coordinate of each point of inflection for f. Justify your answer.
e) On what intervals is the graph of f concave up and has a negative slope? Explain your reasoning.
f) For the interval $-9 \leq x \leq 9$, sketch a possible graph of f on the axes provided.

2. Suppose you had the curve for $x^{3}-3 x^{2} y+2 x y^{2}=12$
a) Find $\frac{d y}{d x}$
b) Find $\frac{d y}{d x}$ at the point $(-1,3)$.
c) Find the equation of the tangent line at the point (2,-1)
d) Find $\frac{d^{2} y}{d x^{2}}$

Calculator Allowed

The position of a particle moving in a straight line is given by the equation $f(t)=t^{3}-4 \sin \left(\frac{\pi t}{2}\right)-3 t$. Where t is in seconds.
a) Find the average velocity of the particle over the interval $0 \leq t \leq 4$.
b) Determine the intervals when the particle is moving the left or to the right.
c) Determine the intervals when the particle is speeding up or slowing down.

